

CJC6833A Function Specification V9.0

====Disclaimer=====

The device application information described in this publication is for reference only. The device may be replaced by the updated product. Please confirm that the application meets the technical specifications. Our company will not make any form of statement or guarantee for the content information, and will not bear any responsibility for the consequences caused by the information and the use of the information content. Our products shall not be used as key components of life support system without our written approval. Under the protection of intellectual property rights of our company, we shall not transfer any license in secret or in other ways.

Revision history

Version	Author	Date	Note
V1.0	Jie Li	2019-09-11	Draft version
V2.0	Jie Li/ Qin Xiong	2019-12-30	Complete register descriptions, reform the document, fix some mistakes
V3.0	Jie Li/ Qin Xiong	2019-12-30	Fix some mistakes of ROM and RAM
V4.0	Loyal	2022-01-13	Change flash to MTP
V5.0	SB	2022-02-07	Change PIN
V6.0	SB	2022-02-14	Change PIN ,add RESETB
V7.0	SB	2022-02-18	Change PIN
V8.0	SB	2022-02-21	Change PIN
V9.0	Fu Tingzuo	2022-07-20	Change Clock tree and relative register

www.eshine-ic.com

1. Overview

CJC6833A is a Cortex-M0+ based MCU, designed for USB headphone appliances.

It integrates one 32-bit RISC CPU with 16KB SRAM, USB, UART, IIC, audio codec, GPIO, TIMER, WDT, PWM, SPI, IIS, SPDIF, PDM, SARADC, PLL, LDO etc.

CJC6833A can boot from internal ROM . After powered on, the program is executed from internal MTP .

The CJC6833A can run up to 48MHz, and it is designed with special care to minimize the power consumption while allowing for the flexibility to reach for high performance. It includes the clock gating for individual IP, and CJC6833A can be further operated under different power-saving modes: Normal, Idle, Standby, Power-down, different mode have different clock and power strategy.

1.1 Features

- Cortex-M0+ Like
- LDO
- Built-in LDO for wide operating voltage range:3.3V/1.8V
- Memory
- RAM:16 KB DATA SRAM
- ROM:16 KB
- In-system programming & In-Circuit programming by USB/UART
- Clock control
- Programmable system clock source
- 12MHz clock from USB oscillator
- Support external crystal oscillator
- 10KHz internal low-power RC-oscillator for watchdog and idle wake-up
- USB Compliance
- USB Spec.V2.0 high speed/full speed mode compatible
- USB Audio Class V1.0/V2.0 compatible
- USB Human Interface Device V1.1 compatible
- Support USB suspend/resume/reset function
- Support control, interrupt, bulk and isochronous data transfer
- Audio codec
 - Default sample rate:192k/176.4k/96k/88.2k/48k/44.1k(192k/176.4k are available only in USB audio class V2.0/High-speed mode)
- Support bit length:16/20/24/32bit
- I/O port
- Up to 25 general purpose I/O(GPIO)
- TIMER
- 3 internal timers
- Internal or external clock source selection
- Interrupt can be issued upon overflow and time-up
- Each timer has two match registers
- Supports the incrementing and decrementing models
- Watchdog Timer

During the timeout, the outputs are one or a combination of the following signals

- -----System reset
- -----System interrupt
- -----External interrupt
- 32-bit down counter
- Internal or external clock source selection
- A variable time-out period of reset
- Access protection
- PWM
- Four 16-bit timers PWM channel
- Programmable duty control of output waveform
- Auto reload mode or one-shot pulse mode
- Capture and compare function
- UART
- Programmable baud rates ,Baud rate up to 921.6K
- Support 38KHz house IR transceiver
- SPI
- One specified SPI interface as AHB device for boot loader and APB device for write back
- speed up to 40MHz
- I2C
- compatible with Philips IIC standard
- I2S/SPDIF
- support the Sony/Philips Digital Interface Format(SPDIF) transmitter
- support master/slave mode and 16/24/32bit data width
- PDM(For digital microphone)
- One PDM interface with 1bit DSM data from digital microphone
- SARADC
- 5 channel analog input
- **1**0bit SARADC, 4bit accuracy is guaranteed
- Brown out reset
 - Programmable 3 threshold levels: 2.7V/2.4V/2.0V(default 2.0V
- Optional BOD interrupt or reset
- operating temperature:-20~+85 Degree
- Package: QFN32 for 2 dies package

1.2 System diagram

2. PIN diagram a) QFN32 PACKAGE

Figure 2. CJC6833A PIN diagr

b) QFN48 PACKAGE

Figure 3. CJC6833A PIN diagr

3. PIN description

LQFP48	LQFP32	NAME		ALF1	ALF2	PGM MODE	ADC Mode	ANALOG MODE	USB TEST	默认上下拉
1		GPIO8		XTAL IN	PWM3		ADAT7	AUDIO CLK	TEST BIST	
2		GPIO9		SPIB CLK	IIC SCL	SCLK				
3		GPIO10		SPIB SI	IIC SDA	SDI				
4		GPIO11		SPIB SO	MCO	SDO				
5	4	VSSIO0								
6	5	VDDI033								
7	6	GPIO12		SWCLK	PDM CLK					default PullDown
8	7	GPIO13		SWDIO	PDM_DAT					default PullUp
9		GPIO14		SPIB_CSN	IIS_MCLK	CSN				
10		GPIO15		IIS_SDO	SGDAT0	S0=X	S0=H	S0=L	S0=H	
11		GPIO16		IIS_SDI	SGDAT1	S1=X	S1=L	S1=H	S1=H	
12		GPIO17		IIS_LRCK	SGDAT2	S2=X	S2=L	S2=L	S2=L	
1		GPIO18		IIS_SCLK	SGDAT3		ADCLK	LVR_S0		
14		GPIO19		I2S_DIN	SG_ZC		ADEN	LVR_S1		
15	8	SPIS_EN				SPIS_EN=H	SPIS_EN=H	SPIS_EN=H	SPIS_EN=H	default PullDown
16		DVDD12								
17	9	PGND								
18	10	VCP2OUT								
19	11	VDD33								
20	12	CPP								
21	. 13	CPVDD								
22	14	CPGND								
23	15	CPN								
24	16	CPVEE								
25	17	VREF								
26		AVDD12								
27	18	AGND								
28	19	AINP								
29	20	AINN								
30	21	HPGND								
31	22	HPVDD								
32	23	HP_L								
33	24	HP_R								
34		AGND								
35	25	VDD33								
36	26	SAR_IN0	SAR_IN0				SAR_IN0			
37	27	GPIO1	SAR_IN1				ADAT0			
38	28	GPIO2	SAR_IN2				ADAT1			~
39	29	GPIO3	SAR_IN3				ADAT2			
40		GPIO4	SAR_IN4				ADAT3			
41	30	VCC33								
42	31	USB_DP								
43	32	USB_DM								
44	1	UGND								
45	2	RESETB								
46		GPIO5		I2S_DOUT	PWM0		ADAT4			
47	3	GPIO6		UART_TXD	PWM1		ADAT5	LVR_OUT		
48		GPIO7		UART_RXD	PWM2		ADAT6	OSC_10K		

a) QFN32 PACKAGE PIN DESCRIPTION

Table 1 PIN description

33 Pin No.	PIN_NAME	IO_TYPE	COMMENT						
	DIGITAL PIN								
27	GPIO1	ΙΟ	GPIO1(SAR_IN1)						
28	GPIO2	ΙΟ	GPIO2(SAR_IN2)						
29	GPIO3	IO	GPIO3(SAR_IN3)						
2	RESETB	Ι	RESET PIN (when RESETB=0 ,reset all chip)						
3	GPIO6	ΙΟ	可与 UART_TXD 复用,默认 UART_TXD 功能						
5	5 GPIO12 IO		与 SWCLK 和 PDM_CLK 复用,默认选中 SWCLK						
6	GPIO13	IO	与 SWDAT 和 PDM_DAT 复用,默认选中该 SWDAT						
8	CDIC EN	т	编程模式, 需要外部默认下拉, 0是正常模式, 1进入						
	SPIS_EN	l	编程或者测试模式						
	-	A	NALOG PIN						
26	SAR_IN	ΙΟ	SAR_IN						
24	HP_R(ROUT)	0	HEADPHONE out R						
23	HP_L(LOUT)	О	HEADPHONE out L						
20	AINN	Ι	MIC IN(connect to gnd)						
19	AINP	Ι	MIC IN (connect to bias)						
17	VREF	Ι	Voltage Reference						
1	USB_DM	IO	USB_DM						
31	USB_DP	IO	USB_DP						

POWER							
30	VCC33	POWER	Power for USB digital				
32	UGND	GROUND	Ground for USB				
4	VSSIO	GROUND	Groud for digital IO				
5	VDDIO33	POWER	Power for digital IO				
9	PGND	GROUD	Ground for switch voltage regulator				
10	VCP2OUT	POWER	OUT of switch voltage regulator				
11	VDD33	POWER	Power for switch voltage regulator				
12	СРР	POWER	Port P of charge pump				
13	CPVDD	POWER	POWER of charge pump				
14	CPGND	GROUND	Ground for charge pump				
15	CPN	POWER	Port N of charge pump				
16	CPVEE	POWER	OUT of charge pump				
18	AGND	GROUND	Ground for core				
21	HPGND	GROUND	Ground for headphone driver				
22	HPVDD	POWER	Power for headphone driver				
25	VDD33	POWER	Power for SAR ade 3.3V				

b) QFN48 PACKAGE PIN DESCRIPTION

33 Pin No.	PIN_NAME	IO_TYPE	COMMENT					
DIGITAL PIN								
37	GPIO1	IO	GPIO1(SAR_IN1)					
38	GPIO2	IO	GPIO2(SAR_IN2)					
39	GPIO3	IO	GPIO3(SAR_IN3)					
40	GPIO4	ΙΟ	GPIO4					
42	USB_DP	IO	USB_DP					
43	USB_DM	IO	USB_DM					
45	RESETB	Ι	RESET PIN (when RESETB=0 ,reset all chip)					
46	GPIO5	IO	与 I2S_DOUT 和 PWM0 输出复用,默认 I2S_DOUT					
47	GPIO6	IO	与UART_TXD输出复用和PWM1输出复用,默认TXD					
48	GPIO7	IO	与UART_RXD输入复用和PWM2输出复用,默认RXD					
1	GPIO8	Ι	与外部时钟 XTAL_IN 输入和 PWM3 输出复用					
2	GPIO9	IO	与 SPI_CLK 和 IIC_SCL 复用,默认 SPI_CLK					
3	GPIO10	IO	与 SPI_SI 和 IIC_SDA 复用,默认 SPI_SI					
4	GPIO11	IO	与 SPI_SO 和 MCO 输出复用,默认 SPI_SO					
7	GPIO12	ю	与 SWCLK 和 PDM_CLK 复用, 默认选中 SWCLK, 需					
	011012	10	要外部下拉					
8	GPIO13	IO	与 SWDAT 和 PDM_DAT 复用, 默认选中该 SWDAT,					
	011015	10	需要委外部上拉					
9	GPIO14	Ι	与 SPI_CSN 和 IIS_MCLK 输入复用,默认 SPI_CSN					
10	GPIO15	IO	与 IIS_SDO 复用,默认 IIS_SDO					
11	GPIO16	IO	与 IIS_SDI 复用, 默认 IIS_SDI					

12	GPIO17	IO	与 IIS_LRCK 复用,默认 IIS_LRCK
13	GPIO18	IO	与 IIS_SCLK 复用,默认 IIS_SCLK
14	GPIO19	IO	与 I2S_DIN 复用,默认 I2S_DIN
15	SPIS EN	т	编程模式,需要外部默认下拉,0是正常模式,1进入
	SPIS_EN	1	编程或者测试模式
		A	NALOG PIN
36	SAR_IN	ΙΟ	SARADC IN
33	HP_R(ROUT)	0	HEADPHONE out R
32	HP_L(LOUT)	0	HEADPHONE out L
29	AINN	Ι	MIC IN(connect to gnd)
28	AINP	Ι	MIC IN (connect to bias)
25	VREF	Ι	Voltage Reference
			POWER
41	VCC33	POWER	Power for USB digital
44	UGND	GROUND	Ground for USB
5	VSSIO	GND	3.3V IO ground
6	VDDIO33	POWER	3.3V IO power
16	DVDD12	POWER	Power for digital
17	PGND	GROUD	Ground for switch voltage regulator
18	VCP2OUT	POWER	OUT of switch voltage regulator
19	VDD33	POWER	Power for switch voltage regulator(main power)
20	CPP	POWER	Port P of charge pump
21	CPVDD	POWER	POWER of charge pump
22	CPGND	GROUND	Ground for charge pump
23	CPN	POWER	Port N of charge pump
24	CPVEE	POWER	OUT of charge pump
26	AVDD12	POWER	Power for core 1.2V
27	AGND	GROUND	Ground for core
30	HPGND	GROUND	Ground for headphone driver
31	HPVDD	POWER	Power for headphone driver
34	AGND	GROUND	Ground for core
35	VDD33	POWER	Power for SAR adc 3.3V

4. Function description

4.1 CJC6833A address map

Figure 3 shows CJC6833A address map.

CM0 PIKMCU address Mar		JA 6100 address Map	
			0x6000_00
AHB default slav€55M		Reserved	0x4001_54
Example system	0xF 0101000	INTC(optional)	0x4001_50
Level ROM table 4K	0xF 0100000	Reserved	0x4001 4c
AHB default slave984M		Watchdog	0x 4001_48
	0xF 0004000	Reserved	0x4001_34
MIB RAM optional)4K	0xF 0003000	TIMER	$0 \times 4001_{30}$
MTB(optional) 4K	0xE 0002000	RCC(clk, reset control	$0 \times 4001_{20}$
Reserved PIL CT)	0xF 0001000	Reserved	
Reserved PIL ROM table		Reserved	0x4001_28
4K	0xF 0000000	Reserved	$-0x4001_{24}$
Reserved 255M	0xE 0100000	IIC	$- 0x4001_20$
Private peripheral bukM		SARADC	$- 0x4001_10$ $0x4001_12$
Tittate peripitetal capiti	9xE 0000000	PWM	$0 \times 4001 14$
AHB default slave 1M	[Reserved	$0 \times 4001 10$
	0x 40001800	UART	$0x4001_10$
GPIO2	0x 40001000	Reserved	0x 4001_08
GPI01		I2S/ SPDIF/ CODEC	0x 4001_04
01101	0x 40000800	SYS_Config	0x4001 00
GPI00	0x 40000000	Reserved	
AHB default slave11M	0x 20100990	USB	$- 0x4000_{-20}$
Memory slavel M	0- 30000000	DMA	0x 4000 18
AHB default slav&11M	0x 2000000	Reserved	0x400008
And default slave Thy	0x 00100000	GPIO0	0x 4000_00
Memory slave 1M	0x 00000000	Reserved	0x 2020_00
		SPI	0x 2010 00
		Data_RAM	0x 2000_00
		Reserved	0x1080_00
		FLASH	0x1000_00
		Reserved	0x0010 00
		Rom	

Figure 4 .CJC6833A address map

4.2 BUS interface unit

CJC6833A chip integrate 2 AHB bus and 1 APB (AMBA protocol compatible). CPU core operates as AHB master in one AHB bus, and DMA controller operates as AHB master on other AHB bus. One AHB2APB Bridge is used for peripherals configuration.(see Figure1).

4.3 ROM

CJC6833A integrate 16KB boot ROM. When ISP is available, CPU Boots from internal boot ROM, Receives program code from UART bus and Stores in external MTP. If normal mode is enabled, CPU Boots from internal boot ROM, Fetch program code from external SPI MTP and Stores in internal SRAM, then, re-mapping memory configuration, boots from internal SRAM.

4.4 SRAM

The embedded high-speed SRAM is designed for both program code and scratchpad RAM. CJC6833A integrates one 16KB SRAM 16KB SRAM as the data memory.

4.5 PLL and clock generation

PLL module generates audio clock from the 12MHz USB-oscillator or an external 12MHz crystal. Audio PLL offer clock source for audio processor according to the audio sampling rate, if sampling rate is 8KHz, 16KHz, 32KHz, 48KHz and so on, the APU clock is 24.576MHz and if sampling rate is 22KHz, 44.1KHz and so on, the APU clock is 22.5792MHz. The APU PLL output can be configured via registers.

CJC6833A chip has one internal low-power oscillator to generate 10KHz output. Figure 5 is CJC6833A clock diagram.

Figure 5.CJC6833A clock diagram

Table 2 system	control 1	register 1	ist (BaseA	ddr = 0x40	01 0000)
rable 2 system	control i	legister i	ist (Daser	uui 0A+0	01 0000)

Addr.	Name	Туре	Default	Bit	Default
0x00	R0	R/W	0x5568_55	[31:30]	0x0: gpio15, 0x1, iis_sdo
			55	[29:28]	0x0: gpio14, 0x1, spi_csn, 0x2: iic_mclk
				[27:26]	0x0: gpio13, 0x1, swdat, 0x2: pdm_dat
				[25:24]	0x0: gpio12, 0x1, swclk, 0x2: pdm_clk
				[23:22]	0x0: gpio11, 0x1, spi_so, 0x2: mco
				[21:20]	0x0: gpio10, 0x1, spi_si, 0x2: iic_sda[default]
				[19:18]	0x0: gpio9, 0x1, spi_clk, 0x2: iic_clk[default]
				[17:16]	0x0: gpio8, 0x1, xtal_in, 0x2: pwm3
				[15:14]	0x0: gpio7, 0x1, uart_rxd, 0x2: pwm2
				[13:12]	0x0: gpio6, 0x1, uart_txd, 0x2: pwm1
				[11:10]	0x0: gpio5, 0x1, i2s_dout, 0x2: pwm0
				[9:8]	0x0: gpio4, 0x3, sar_in4

				[7:6]	0x0: gpio3, 0x3, sar_in3
				[5:4]	0x0: gpio2, 0x3, sar_in2
				[3:2]	0x0: gpio1 , 0x3:sar_in1
				[1:0]	无效,sar_in0
0x04	R1	R/W	0x0	[31:1]	Reserved
				[0]	sys_remap : 1:enable & reset
					1: Address 32'h0000_0000 remap to code_ram
					0: Address 32'h0000_0000 remap to ROM
0x08	R2	R/W	0x0	[31:9]	Reserved
				[8]	PLL 12MHz reference clock source select:
					clk_xtal_in: 12MHz clock from IO PAD CLK_XTAL
					clk_12m_usb: 12MHz clock from USB_oscillator
					fref_12m_sel:
					1,clk_12m_fref = clk_xtal_in;
					$0,clk_12m_fref = clk_12m_usb$
				[7:4]	A clock mux for PLL reference clock select, audio
					clock source select and X_CLK PAD clock out
					source select.
					clk_12m_fref: 12MHz clock for reference
					clk_i: clock input from IO PAD X_CLK
					pll_audio_clk_i: audio clock from PLL
					osc_1m: 1mHz clock from internal oscillator
					clk_o: clock output from IO PAD X_CLK
					clk_mux_r:
					b0000: pll_fref = clk_12m_fref;
					pll_audio_clk_w = pll_audio_clk_i;
					$clk_0 = 1'h0;$
					$b0001: pll_fref = clk_12m_fref;$
					pll_audio_clk_w = clk_i;
			Y		$clk_o = 1'h0;$
					$b0010: pll_fref = clk_1;$
					pll_audio_clk_w = pll_audio_clk_1;
					$clk_0 = 1$ 'h0;
					$b1000: pll_tref = clk_12m_tref;$
					$pll_audio_clk_w = pll_audio_clk_1;$
					$clk_0 = clk_48m_usb;$
					c_{1001} ; c_{11}
					$pn_audio_cik_w = pn_audio_cik_1;$
					$cik_0 - pii_audio_cik_1;$ $b1010: pil_fref = cik_12m_fref;$
					biolo. pn_net $-$ cik_12in_itel;
					$pn_audio_cik_w - pn_audio_cik_i;$
					$\operatorname{cir}_{0} = \operatorname{osc}_{111}$
					pll_audio_clk_w = pll_audio_clk_1; clk_o = osc_1m; b1011: pll_fref = clk_12m_fref;

					pll_audio_clk_w = pll_audio_clk_i;
					$clk_o = clk_12m_fref;$
					other: pll_fref = clk_12m_fref;
					pll_audio_clk_w = pll_audio_clk_i;
					$clk_o = 1'h0;$
				[3]	pll_bypass
					1: Bypass PLL, sys_clk/audio_clk = fref_clk
				[2:1]	lvr in :
					config the threshold voltage for low voltage reset
					b00 : 2.0V
					b01 : 2.4V
					b10:2.7V
					b11:3V
				[0]	lvr_en : enable low voltage reset
0x0C	R3	R/W	0x0	[31:4]	Reserved
				[3]	Reserved
				[2]	Audio_pll_rstn: audio pll reset
					1: reset
					0: work
				[1]	Reserved
				[0]	Audio_pll_pdn: audio pll power down
					1:power down
					0: work
0x10	R4	R/W	0x0	[31:24]	Reserved
				[23:22]	codec_div_sel: pll_audio_clk_w divider
					0: pll_audio_clk_div = pll_audio_clk_w/2
					1: pll_audio_clk_div = pll_audio_clk_w/4
					2: pll_audio_clk_div = pll_audio_clk_w/8
					Others: pll_audio_clk_div = pll_audio_clk_w/2
				[21:16]	tmr_clk_sel
					[17:16] == 'h0: tmr1_clk_w=clk_12m_fref
					[17:16] == 'h1: tmr1_clk_w=pll_audio_clk_div
		\backslash			[19:18] == 'h0: tmr2_clk_w=clk_12m_fref
					[19:18] == 'h1: tmr2_clk_w=pll_audio_clk_div
					[21:20] == 'h0: tmr3_clk_w=clk_12m_fref
					[21:20] == 'h1: tmr3_clk_w=pll_audio_clk_div
				[15:14]	uart_clk_sel: uart clock select
					0 :clk_12m_fref
					1 :clk_48m_usb
					2 :pll_audio_clk_i
					Other: clk_12m_fref
				[13:12]	Wdt_clk_sel:watchdog_extclk_select
				[]	
				[]	0 :clk_12m_fref

					Other: clk_12m_fref
				[11:9]	pclk_div_sel: ratio of pclk
					0: 1/1 1:1/2 2:1/4 3:1/8 4:1/16
					other:reserved
				[8:6]	hclk_div_sel:ratio of hclk/core_clk
					0:1/1 1:1/2 2:1/4 3:1/8 4:1/16
					other:reserved
				[5:3]	sysclk_div_sel:Ratio of core_clk/system clock
					0:1/1 1:1/2 2:1/4 3:1/8 4:1/16
					other:reserved
				[2:0]	sysclk_sel
					000:clk_12m_usb
					001:osc_1m
					011:clk_30m_usb
					100:clk_48m_usb
					101:clk_12m_fref
					Other: reserved
0x14	R5	R/W	0x2403127	[31]	pll_mindly_ls
			0	[30]	Reserved
				[29:23]	Pll_iny_num, integral part of the multiple of
					PLL_VCO, enabled when $pll_n_{sel} = 2'b10$.
				[22:21]	Reserved
				[20:5]	pll_sin16_in, fractional part of the multiple of
					PLL_VCO, enabled when $pll_n_{sel} = 2'b10$.
					pll_sin16_in[15:14] are sign bits, pll_sin16_in[13:0]
					are effective bits.
					pll_sin16_in[15:14] = 2'b00:
				Ť	pll_sin16_in[13:0]/(2^14)
					pll_sin16_in[15:14] = 2'b11:
					-(~pll_sin16_in[13:0] + 1'b1)/(2^14)
					others: reserved
					For example:
					$pll_n_{sel} = 2$ ' $b10$, $pll_mul_num = 7$ '
					b0010011, pll_sin16_in = 16 '
					b1111_0100_0011_1010,
					pll_div_num = 5' b10100, pll_fref = 12MHz.
					Fpll_vco = pll_fref * (pll_mul_num + pll_sin16_in/2
					^14) = 12 * (19 - 0.18396) = 225.79248MHz
					<pre>Fpll_clk_out = Fpll_vco/(pll_div_num/2) =</pre>
					225.79248/10 = 22.579248MHz
				[4:0]	reserved
0x18	R6	R/W	0x0	[31:5]	Reserved

				[4:3]	Pll_icp_trim:pll charge pump charge current control
					00:default
				[2:1]	Pll_vco_trim, trim the frequency of pll_vco clock
					2' b00: default, 24.576MHz
					2' b01: 22.5792MHz,
				[0]	Pll_vco_test_en: pll vco test enable
					1:enable
					0: disable
0x20	R8	R/W	0x5555555	[31:8]	Reserved
				[7:6]	0x0: gpio19, 0x1, i2s_din
				[5:4]	0x0: gpio18, 0x1, iis_sck
				[3:2]	0x0: gpio17, 0x1, iis_lrck
				[1:0]	0x0: gpio16, 0x1, iis_sdi
0x24	R9	R/W	0x0	[31:1]	Reserved
				[0]	MTP_burn_flag
				[31:13]	Reserved
				[13]	Vee_sel
				[12]	En_comp_cp
				[11]	En_buffer_cp
				[10]	Vref_en_codec
				[9]	Vref_en_hp
				[8]	Vref_en_sar
				[7]	Ldo_bgr_en
				[6]	Cp_dleay
0x28	R10	R/W		[5]	Cp_osc_pd
				[4]	Cp_cmp_en
				[3:0]	Hystb_burst

4.6 DMA

DMA is designed to enhance the system performance and reduce the processor-interrupt generation. The system efficiency is improved by employing the high-speed data transfers between the system and the device. The DMA controller provides up to 16 configurable channels (Figure 6) for memory-to-memory, memory-to-peripheral, peripheral-to-peripheral, and peripheral-to-memory transfers with a shared buffer. Figure 6 shows the DMA controller module block diagram.

DMA consists of 5 main blocks: AHB master interfaces, AHB slave interface, FIFO buffer, and DMA core. AHB master interface transfer data between the system and the DMA FIFO, system can configure the DMA controller through AHB slave interface, FIFO buffer provides the buffer between the source and the destination, and DMA core is configurable up to an 16-channel DMA engine, both source and destination are on AHB Bus, Each channel can be assigned with a group priority level, and the same group priority is serviced in the round-robin fashion.

DMA controller uses the 4-group priority and the round-robin scheme to select which channel to serve. Arbitration is based on the priority level of the channels. If the channels have the same priority level, the arbitration will then be based on the round robin scheme. Each channel has a 2-bit priority value associated with it. A value of 3 indicates the highest priority level and a value of 0 indicates the lowest priority.

Figure 6. DMA controller module block diagram

DMA controller has one type work mode: hardware handshake mode.

Hardware handshake mode: when the channel wins the arbitration, the DMA controller will wait for the external DMA request to be asserted before starting the DMA transfer. Each time the DMA request is asserted, the controller transfers units equal to SRC_BURST_SIZE. When SRC_BURST_SIZE transfer is completed, the DMA controller asserts the acknowledge and then re-arbitrates among all DMA requests. After detecting the assertion of acknowledge, the external device should de-assert the DMA request to let the DMA controller de-assert acknowledge. After TOT_SIZE transfers have been done, the DMA controller asserts TC[0] (bit 0 of Terminal Count Status Register (TC)), dma_tc[0] and both dmaint_tc and dmaint interrupts (if not masked).

During the transfer, if the source or destination slave returns an ERROR response, the DMA will set the ERR bit and terminate the DMA transfer at once.

During the transfer, if the software sets the abort bit, after finishing SRC_BURST_SIZE transfers or TOT_SIZE transfers, the DMA controller will set the ABT bit and terminate the DMA transfer at once.

Figure 7 show the DMA hardware handshake mode protocol.

Figure 7. DMA hardware handshake mode protocol

Table 3 DMA control register list (BaseAddr = 0x4000_1800)

Name	Addr	Width	Access	Description
		sters		
INT +0		8	RO	Interrupt status register
INT_TC	+4	8	RO	Interrupt for terminal count status register
INT_TC_CLR	+8	8	WO	Interrupt for terminal count clear register
INT_ERR/ABT	+c	32	RO	Interrupt for Error/Abrot status register
INT_ERR/ABT_CLR	+10	32	WO	Interrupt for Error/Abrot clear register
TC	+14	8	RO	Terminal count status register
ERR/ABT	+18	32	RO	Error/Abrot status register
CH_EN	+1c	8	RO	Channel enable status register
CH_BUSY	+20	8	RO	Channel busy register status register
CSR	+24	8	RW	Main configuration status register
SYNC	+28	8	RW	Sync register
DMAC_REVITION	+30	32	RO	DMAC revition register
DMAC_REATURE	+34	32	RO	DMAC feature register
CHANNELn regsiters				gsiters
Cn_CSR	+100+20*(n-1	32	RW	Channel O control register
)			
Cn_CFG	+104+20*(n-1	32	RW	Channel O configuration register
)			
Cn_Srcaddr	+108+20*(n-1	32	RW	Channel O source register
)			
Cn_Dstaddr	+10c+20*(n-1	32	RW	Channel O destination register
)			
Cn_LLP	+110+20*(n-1	32	RW	Channel O linked list pointer register
			r	
Cn_SIZE	+104+20*(n-1	32	RW	Channel O transfer size register

Interrupt status register offset:0x00 default:0x0000_0000

[31:6]	reserved	
[5:0]	int_s	The result of (int_abt int_err int_tc), from chennal 0 to 5

INT_TC Register

offset:0x04 default:0x0000_0000

[31:6]	reserved	
[5:0]	int_tc	Status of the DMA terminal count interrupts after masking, from
		chennal 0 to 5
		0: Channel has no pending interrupt.
		1: Channel has a pending interrupt.

INT_TC_CLR Register offset:0x08 default:0x0000_0000

[31:6]	reserved	
[5:0]	tc_clr	Write 1 to clear the INT_TC and TC status, from chennal 0 to 5

INT_ERR/INT_ABT Register offset:0x0C default:0x0000_0000

[31:22]	reserved	
[21:16]	int_abt	Status of the DMA abort interrupts after masking, from chennal 0
		to 5
		0: Channel has no pending interrupt.
		1: Channel has a pending interrupt.
[15:6]	reserved	
[5:0]	int_err	Status of the DMA error interrupts after masking, from chennal 0
		to 5
		0: Channel has no pending interrupt.
		1: Channel has a pending interrupt.

ERR_CLR/ABT_CLR Register offset:0x10 default:0x0000_0000

[31:22]	reserved	
[21:16]	abt_clr	Write 1 to clear the INT_ABT and ABT status, from chennal 0 to
		5
[15:6]	reserved	
[5:0]	err_clr	Write 1 to clear the INT_ERR and ERR status, from chennal 0 to
		5

TC Register offset:0x14 default:0x0000_0000

[31:6]	reserved	
[5:0]	tc	Status of the DMA terminal count, from chennal 0 to 5
		0: Channel has no terminal count status.
		1: Channel has a terminal count status.

ERR/ABT Register

offset:0x18 default:0x0000_0000

[31:22]	reserved	
[21:16]	int_abt	Status of the DMA abort interrupts after masking, from chennal 0
		to 5
		0: Channel has no pending interrupt.
		1: Channel has a pending interrupt.
[15:6]	reserved	
[5:0]	int_err	Status of the DMA error interrupts after masking, from chennal 0
		to 5

	0: Channel	has no pending interrupt.
	1: Channel	has a pending interrupt.

CH_EN status Register offset:0x1C default:0x0000_0000

[31:8]	reserved		
[5:0]	ch en	Status of the channel	CH FN bit of C0 CSR to C5 CSR
[3.0]		register	
		$0: CH_EN = 0$	
		1: CH_EN = 1	

CH_BUSY Register offset:0x20 default:0x0000_0000

[31:6]	reserved	
[5:0]	ch_busy	Status of the channel BUSY bit of C0_CFG to C5_CFG register 0: BUSY = 0 1: BUSY = 1

CSR(Configuration Status Register) offset:0x24 default:0x0000_0000

[31:3]	reserved	
[2]	mlend	AHB Master 1 endian configuration:
		0 = Little-endian
		1 = Big-endian
[1]	m0end	AHB Master 0 endian configuration:
		0 = Little-endian
		1 = Big-endian
[0]	dmacen	DMA controller enable
		0 = Disable
		1 = Enable

offset:0x28	default:0x0000_0000
-------------	---------------------

[31:6]	reserved	
[5:0]	sync	DMA synchronization logic enable for channel 0~5 request:
		0: Disable
		1: Enable

DMAC Feature Register

SYNC Register

offset:0x34 default:0x0000_6103

[31:16]	reserved	
[15:12]	DMA_MAX_CHNO_N	DMA maximum channel number, N can be configured from 1 to
		8

[11]	reserved	
[10]	DMA_HAVE_BRIDGE_v	1: DMA has built in a simple bridge.0: DMA has not built in a
	alue	simple bridge.
[9]	DMA_HAVE_AHB1_val	1: DMA has AHB 0 and AHB 1.0: DMA only has AHB 0
	ue	
[8]	DMA_HAVE_LINKLIST	1: DMA supports link list.0: DMA does not support link list
	_value	
[7:4]	reserved	
[3:0]	DMA_FF_ADD_WIDTH	FIFO ram address width
Channel Control Register (Cn CSR) default:0x0000 1200		

Channel Control Register (Cn_CSR)

default:0x0000_1200

int_tc_msk	Terminal count status mask for current transaction:
	0: When terminal count happens, TC status register will be set
	(default).
	1: When terminal count happens, TC status register will not be
	set.
reserved	
dma_ff_th	DMA FIFO threshold value:
	000: Threshold value = 1
	001: Threshold value = 2
	010: Threshold value = 4
	011: Threshold value = 8
	100: Threshold value = 16
	$101 \sim 111$: Threshold value = 1
	When DMA FIFO space \geq DMA_FF_TH, then DMA
	controller will start to transfer the data from the source to
	FIFO.
	When the number of valid data in the DMA FIFO is greater
	than DMA_FF_TH, then the DMA controller will start to pop
	out data from FIFO to the destination.
	Notice that, DMA_FF_TH can not be larger than 1/2 DMA
	FIFO size.
chpri	Channel priority level:
	3: Highest priority
	2: 2nd high priority
	1: 3rd high priority
	0: Lowest priority (Default)
prot3	PROT: Protection information for cacheability
	reserved dma_ff_th chpri

		0: Not cacheable (Default)
		1: Cacheable
[20]	prot2	PROT: Protection information for cacheability
		0: Not cacheable (Default)
		1: Cacheable
[19]	prot1	PROT: Protection information for cacheability
		0: Not cacheable (Default)
		1: Cacheable
[18:16]	src_sz	Source burst size selection
		000: Burst size = 1 (default)
		001: Burst size = 4
		010: Burst size = 8
		011: Burst size = 16
		100: Burst size = 32
		101: Burst size = 64
		110: Burst size = 128
		111: Burst size = 256
[15]	chabt	Transaction abort
		Writing 1 to this bit will cause the DMA to stop the current
		transfer, then set the chabt[n] bit of Error/Abort Status
		Register and assert dmaint interrupt if INT_ABT_MST = 0.
[14]	Reserved	
[13:11]	swidth	Source transfer width
		The hardware automatically packs and unpacks the data as
		required.
		000: Transfer width is 8 bits.
		001: Transfer width is 16 bits.
		010: Transfer width is 32 bits (Default).
		Others: Reserved
[10:8]	dwidth	Destination transfer width The hardware automatically packs
		and unpacks the data as required.
		000: Transfer width is 8 bits.
		001: Transfer width is 16 bits.
		010: Transfer width is 32 bits (Default).
		Others: Reserved
[7]	mode	0: Normal mode (Default)
		1: Hardware handshake mode
[6:5]	sad_ctl[1: 0]	Source address control
		00: Increment source address (Default)
		01: Decrement source address
		10: Fixed source address
		11: Reserved

		00: Increment destination address (Default)
		01: Decrement destination address
		10: Fixed destination address
		11: Reserved
[2]	src_sel	0: AHB Master 0 is the source (Default)
		1: AHB Master 1 is the source
[1]	dst_sel	0: AHB Master 0 is the destination (Default)
		1: AHB Master 1 is the destination
[0]	ch_en	Channel Enable
		0: Disable (Default)
		1: Enable
Channel Configuration Register (Cn. CEG) default:0v0000, 2087		
Channel Conngulation Register (Ch_CFO) default.0x0000_2087		

[31:20]	reserved	
[19:16]	chllp_cnt	Chain transfer counter
		This counter is reset to 0 when CH_EN changes from 0 to 1.
[15:14]	reserved	
[13]	dst_he	Destination Hardware Handshake Mode enable:
		0: Disable
		1: Enable
		When you disable the destination hardware handshake, DMA
		will start transfer data without waiting the destination request.
		This bit is only valid when DMAC is in the Hardware
		Handshake Mode
[12:9]	dst_rs	Destination DMA request select:
		It specifies which dma_req as the destination req, and is used
		only when DMA Hardware Handshake Mode is enabled.
[8]	chbusy	1:The DMA channel is busy.
[7]	src_he	Source Hardware Handshake Mode enable:
		0: Disable
		1: Enable
[6:3]	src_rs	Source DMA request select:
		It specifies which dma_req as the source req, and is used only
		when DMA
		Hardware Handshake Mode is enabled.
[2]	int_abt_msk	Channel abort interrupt mask
		0: No mask interrupt
		1: Mask interrupt (Default)
[1]	int_err_msk	Channel error interrupt mask
		0: No mask interrupt
		1: Mask interrupt (Default)
[0]	int_tc1_msk	Channel terminal count interrupt mask

	0: No mask interrupt
	1: Mask interrupt (Default)

$Channel \ Source \ Address \ Register \ (Cn_SrcAddr) \quad default: 0x0000_0000$

[31:0]	chsad	Source starting address
		Note: When the DMA transaction is done, its value changes to
		the DMA source ending address.

Channel Destination Address Register (Cn_DstAddr) default:0x0000_0000

[31:0]	chdad	Destination starting address
		Note: When the DMA transaction is done, its value changes to
		the DMA destination ending address.

Linked List Descriptor Pointer (Cn_LLP) default:0x0000_0000

[31:2]	chllp[31:2]	Linked list descriptor pointer address
[1]	reserved	
[0]	chllp[0]	Master for loading the next LLP:
		0: Load the next LLP from the AHB Master 0 (Default)
		1: Load the next LLP from the AHB Master 1

Transfer Size Register (Cn_SIZE) default:0x0000_0000

[31:22]	reserved	
[21:0]	chtsz[21:0]	TOT_SIZE: Total transfer size
		The transfer unit depends on the source width. For example:
		SRC_WIDTH = 000, unit: 8-bit
		SRC_WIDTH = 001, unit: 16-bit
		SRC_WIDTH = 010, unit: 32-bit
		SRC_WIDTH = 011, unit: 64-bit

Table 4 DMA channel distribution

				Description
	Channel_0	UART	TX	DMA req/ack for UART
	Channel_1		RX	
	Channel_2	I2S/SPDIF	ADC_RX	DMA req/ack for codec
	Channel_3	/CODEC	DAC_TX	
	Channel_4		IIS_RX	DMA req/ack for I2S/SPDIF
	Channel_5		IIS_TX	
	Channel_6	USB	TX_1	DMA req/ack for USB
DMA	Channel_7		TX_2	
	Channel_8		TX_3	
	Channel_9		TX_4	
	Channel_10		RX_1	

Channel_11	RX_2	
Channel_12	RX_3	
Channel_13	RX_4	
Channel_14	Reserved	
Channel_15		

Table 4 DMA channel distribution

Table 4 shows the DMA channel distribution, 14 channels DMA channel are used. UART_TX and UART_RX will occupy two dedicated DMA channel, ADC_RX, DAC_TX, IIS_RX and IIS_TX will occupy four dedicated DMA channel, USB will occupy eight dedicated DMA channel.

4.7 Interrupt controller

Interrupt controller module has NVIC mode to communicate with CPU. It supports 32 NVIC priority level interrupt inputs. Provides 0(max.)~7(min.) configurable priority levels for each NVIC interrupt input. Table 5 CJC6833A NVIC interrupt input distribution

	IRQ_0	Sys_gpio0_int	Interrupt for GPIO
	IRQ_1	Sys_tm0_int	Interrupt for timer0
	IRQ_2	Sys_tm1_int	Interrupt for timer1
	IRQ_3	Sys_wdt_int	Interrupt for watchdog
	IRQ_4	Sys_uart_int	Interrupt for uart
	IRQ_5	Sys_spi_int	Interrupt for spi
	IRQ_6	Sys_iic_int	Interrupt for iic
	IRQ_7	Sys_dmac_int	Interrupt for dmac
	IRQ_8	Sys_saradc_int	Interrupt for sarade
	IRQ_9	Sys_usb_mc_nint	Interrupt for usb
	IRQ_10	Sys_usb_sof_int	Interrupt for usb frame
			sync pulse(disabled)
NVIC	IRQ_11	Sys_dma_nint_usb_w	Interrupt for usb_dma
ID	IRQ_12	Sys_MTP_int	Interrupt for MTP
	IRQ_13		
	IRQ_14	e	
	IRQ_15		
	IRQ_16		
	IRQ_17		
	IRQ_18		
	IRQ_19		
	IRQ_20		
	IRQ_21		
	IRQ_22		
	IRQ_23		
	IRQ_24		
	IRQ_25		
	IRQ_26		

IRQ_27	
IRQ_28	
IRQ_29	
IRQ_30	
IRQ_31	
IRQ_32	

Figure 8 show the interrupt REQ/ACK timing sequence diagram.

4.8 GPIO

GPIO controller is an AHB bus device communicates with CM0+ core. Each GPIO can be programmed as an input or output. It is used to input/output data from the system and device.

This GPIO can also be an interrupt input.

The GPIO provides up to 25 programmable I/O ports and each port can be independently programmed.

1	······································						
	Addr.	Name	Туре	Default	Description		
	+0x000	GPIODATA	R/W	0x0	Reads the value of the GPIOIN pins, or sets the value driven		
					onto GPIOUT pins.		
	+0x400	GPIODIR	R/W	0x0	GPIO direction register		
					0:Input 1:Output		
	+0x410	GPIOIE	R/W	0x0	GPIO interrupt enable register		
					0:Pin interrupt is disabled		
					1:Pin interrupt is enabled		

Table 6 summary of general purpose I/O registers (BaseAddr = 0x4000_0000)

When GPIOIE enable, the change of GPIO input can arose interrupt. Interrupt time continues one hclk clock.

NAME	LQFP48	LQFP32	ANALOG	ALF1	ALF2
GPIO8	1			XTAL_IN	PWM3
GPIO9	2			SPIB_CLK	IIC_SCL
GPIO10	3			SPIB_SI	IIC_SDA
GPIO11	4			SPIB_SO	МСО
VSSI00	5	4			

GPIO 复用功能:

VDDIO33	6	5			
GPIO12	7	6		SWCLK	PDM_CLK
GPIO13	8	7		SWDIO	PDM_DAT
GPIO14	9			SPIB_CSN	IIS_MCLK
GPIO15	10			IIS_SDO	SGDAT0
GPIO16	11			IIS_SDI	SGDAT1
GPIO17	12			IIS_LRCK	SGDAT2
GPIO18	1			IIS_SCLK	SGDAT3
GPIO19	14			I2S_DIN	SG_ZC
SPIS_EN	15	8			<i>b</i>
DVDD12	16				
PGND	17	9			
VCP2OUT	18	10			
VDD33	19	11			
CPP	20	12			
CPVDD	21	13			
CPGND	22	14			
CPN	23	15			
CPVEE	24	16			
VREF	25	17			
AVDD12	26				
AGND	27	18			
AINP	28	19			
AINN	29	20			
HPGND	30	21	Y		
HPVDD	31	22			
HP_L	32	23			
HP_R	33	24			
AGND	34				
VDD33	35	25			
SAR_IN0	36	26	SAR_IN0		
GPIO1	37	27	SAR_IN1		
GPIO2	38	28	SAR_IN2		
GPIO3	39	29	SAR_IN3		
GPIO4	40		SAR_IN4		
VCC33	41	30			
USB_DP	42	31			
USB_DM	43	32			
UGND	44	1			
RESETB	45	2			
GPIO5	46			I2S_DOUT	PWM0
GPIO6	47	3		UART_TXD	PWM1
GPIO7	48			UART_RXD	PWM2

4.9 SARADC

SARADC is accessible by CM0+ core via APB bus. This peripheral is used sampling the external sensor, voltage signal, transfer them to digital data by SARADC block, update the status register and interrupt signal, exchange data with CJC6833A processor.

The SARADC supports five external analog input signal come from sensor, mechanism key etc, the sample time is about 400Hz and sample sequence is one by one, the SARADC transfer result is store in internal register. After finishing one round, interrupt signal will generate, processor will respond this interrupt and enter into ISR. SARADC unit is a 3.3V power supply analog module, co-work with decimation filter to implement the analog-to-digital transfer. ADC control include module timing generation, register control, interrupt generation and APB bus wrapper.Table 8 show this module register list.

Offset	Туре	Name	Bit	Description	Default
0X00	R/W	ADC_CTRL	[31:26]	Reserved	0x0
			[25]	SAR ADC Reset	
				1: reset 0: normal	
			[24]	SAR ADC enable	
				1:enable 0:disable	
			[23:22]	Reserved	
			[21:20]	Ref_clock divider	
				00:8分频,01:16分频,10:32分频,11:64分	
				频	
			[19:17]	Reg_saradc_r_f_lsh control bits	
			[16:14]	Reg_saradc_r_c_lsh control bits	
			[13:11]	Reg_saradc_s_f_lsh control bits	
			[10:8]	Reg_saradc_s_c_lsh control bits	
			[7]	Reserved	
			[6]	sarade sampling data reaching threshold INTP_EN:	
				channel interrupt enable	
				1: enable 0:disable	
			[5]	Reserved	
			[4]	saradc sampling data ready INTP_EN: channel	
				interrupt enable	
				1: enable 0:disable	
			[3:0]	saradc channel select:	
				4'd0: channel0	
				4'd1: channel1	
				4'd2: channel2	
				4'd3: channel3	
				4'd4: channel4	
				default: channel0	
0X04	R/W	DAT_STATUS	[31:7]	Reserved	0x0
			[6:3]	saradc sampling data reaching threshold status:	

Table 7 SARADC module register list (BaseAddr = 0x4001_1800).

				1: reaching 0: not reaching		
				[3]: DATA_DEDECT_CONTROL_0		
				[4]: DATA_DEDECT_CONTROL_1		
				[5]: DATA_DEDECT_CONTROL_2		
				[6]: DATA_DEDECT_CONTROL_3		
				When saradc sampling data below the minimum		
				threshold or beyond the maximum threshold defined in		
				the threshold control register, this status set.		
				Write 1 to this bit will clear the according bits. And at		
				the same time, the interrupt and status will be cleared.		
			[2:1]	Reserved		
			[0]	saradc sampling data ADC_READY: ADC data is		
				ready		
				1:ready 0: not ready		
				Write 1 to this hit will clear the according hits. And at		
				the same time, the interrunt and status will be cleared		
0X08	R	DAT RESULTO	[31.8]	Reserved	0x0	
01100	R	Dim_iubellio	[7:0]	SARADC channel0 result	0110	
0X0c	R	DAT RESULT1	[31:8]	Reserved	0x0	
		_	[7:0]	SARADC channel1 result		
0X10	R	DAT_RESULT2	[31:8]	Reserved	0x0	
			[7:0]	SARADC channel2 result		
0X14	R	DAT_RESULT3	[31:8]	Reserved	0x0	
			[7:0]	SARADC channel3 result		
0X18	R	DAT_RESULT4	[31:8]	Reserved	0x0	
	C		[7:0]	SARADC channel4 result		
0X28	R/W	DATA_DEDEC	[31:23]	Reserved	0x0	
		T_CONTROL_				
		0	[22]	Data high threshold_enable		
			501.103	1: Enable, 0: Disable		
			[21:12]	Data high threshold		
			[11]	Reserved		
			[10]	Data low threshold enable		
				1: enable, 0:disable		

			[9:0]	Data Low Threshold	
0x2c	R/W	DATA_DEDEC	[31:23]	Reserved	
		T_CONTROL_	[22]	Data high threshold_enable	
		1		1: Enable, 0: Disable	
			[21:12]	Data high threshold	
			[11]	Reserved	
			[10]	Data low threshold enable	
				1: enable, 0:disable	
			[9:0]	Data Low Threshold	
0x30	R/W	DATA_DEDEC	[31:23]	Reserved	
		T_CONTROL_	[22]	Data high threshold_enable	
		2		1: Enable, 0: Disable	
			[21:12]	Data high threshold	
			[11]	Reserved	
			[10]	Data low threshold enable	
				1: enable, 0:disable	
			[9:0]	Data Low Threshold	
0x34	R/W	DATA_DEDEC	[31:23]	Reserved	
		T_CONTROL_	[22]	Data high threshold_enable	
		3		1: Enable, 0: Disable	
			[21:12]	Data high threshold	
			[11]	Reserved	
			[10]	Data low threshold enable	
				1: enable, 0:disable	
			[9:0]	Data Low Threshold	

4.10 CODEC/IIS/SPDIF

CJC6833A audio processor can be accessed via AHB bus or APB bus. CM0+ configures audio codec register by Ahb2apb Bridge and DAM translates data with codec by AHB bus.

CODEC receives data from IIS/SPDIF interface and DMA fifo data and sends to DAC module. ADC module disposes analog data (3bit dsm data) and digital microphone data (1bit PDM data) and sends to IIS/SPDIF interface output and DMA FIFO output. Figure 9 shows the block diagram. IIS interface and SPDIF interface are selected by configure FFMT register and they don't occur at one time.

Figure 9.APU block diagram

Table 8 APU	module	register	list ((BaseAddr=0x4001 (1400
Table 6 AL U	mouule	register	1150	Daschuul-UA+001 U	

Register	Bit	Name	Description	Default value
0x00	[31]	dacdiv2	DAC 6dB attenuate enable	0x40008f57
Input volume			0 = disabled (0dB)	
			1=-6dB enabled	
	[30]	dacmu	Digital soft mute	
			1=mute	
			0= no mute (signal active)	
	[29:28]	deemph	De-emphasis control	
			11 = 48kHz sample rate	
			10 = 44.1 kHz sample rate	
			01 = 32kHz sample rate	
			00 = No De-emphasis	
	[27]	adcdiv2	ADC 6dB attenuate enable	
			0 = disable(0dB)	
			1 = -6dB enabled	
	[26]		Reserved	
	[25]	hpor	ADC channel store dc offset when high-pass	
			filter disabled	
			1 = store offset	
			0 = clear offset	
	[24]		Reserved	
	[23]		Reserved	

	[22]	ldcm (rdcm)	0 = adc polarity not inverted	
			1 = adc polarity invert	
	[21:20]	adcpol	00 = dmic polarity not inverted	
		-	01 = dmic1 polarity invert	
			10 = dmic2 polarity invert	
			11 = dmic1 & dmic2 polarity inverted	
	[19:18]		Reserved	
	[17]	adchpd	Adchpd_ana determine high-pass filter behavior	
		-	1'b0 = ADC hpf on	
			1'b1 = ADC hpf off	
	[16]		Reserved	
	[15:14]		Reserved	
	[13:12]	lmicboost	Microphone Gain Boost	
			00 = Boost off (bypassed)	
			01 = 13dB boost	
			10 = 20dB boost	
			11 = 29dB boost	
	[11]	codec_mute_pga	Input analogue mute. Default 1.	
	[10:8]	maxgain	Set Maximum Gain of PGA	
		-	111 = +12dB	
			110 = +6dB	
			(-6dB steps)	
			001=-24dB	
			000=-30dB	
	[7]	livu	Volume update	
			1=Update gain	
			0=Store LINVOL in intermediate latch(no gain	
			change)	
C	[6]	linmute	Left channel analog input mute.	
			1 = Enable Mute	
			0 = Disable Mute	
			Note: LIVU must be set to un-mute.	
	[5]	lzcen	Left channel zero cross detector.	
			1 = change gain on zero cross only	
			0 = change gain immediately	
	[4:0]	linvol	Left channel input volume control	
			11111 = +12dB	
			11110 = +10.5dB	
			10111=0dB	
			1.5dB steps down to	
			00000 = -34.5dB	
0x04	[31]		Reserved	0x3cf93cf9
LOUT1 and	[30]		Reserved	

ROUT1	[29:23]		Reserved	
volume	[22:16]		Reserved	
control	[15]	en_hpc	Line out 1 gain control enable:	
			0: enabled (at the same time, o1vu must enable)	
			1: disabled	
	[14]	olvu	Line out 1 gain enable:	
			1: enabled	
			0: disabled	
	[13:7]	rout1vol	Line out 1 right channel volume gain	
			1111111 = +6dB	
			(80 steps)	
			0110000 = -67 dB	
			0111111 to 0000000 = Analogue mute	
	[6:0]	lout1vol	Line out 1 left channel volume gain	
			1111111 = +6dB	
			(80 steps)	
			0110000 = -67 dB	
			0111111 to 0000000 = Analogue mute	
0x08	[31]	Pcm_mode_set	Pcm mode	0x1000a
ADC & DAC			1=spdif	
control			0=IIS	
	[30]	adc2ahb	24bit USB data input	
			1=IIS data from USB	
*When this			0= IIS data from AHB bus or adc	
register is	[29]	ahb2dac	24bit USB data input	
writed,			1= dac data from USB	
adc/dac			0= dac data from AHB bus or IIS	
digital part	[28:27]	adc_rl_sel	adc left and right data select	
will reset.			2' h0:right data select	
			2' h1:left data select	
			2' h2:left and right data select	
	[26:24]	sr_adc	ADC sample rate control	
			3'b000 = 8k	
			3'b001 = 8.0182k	
			3'b010 = 12k	
			3'b110 = 11.025k	
			3'b011 = 16k	
	[23:19]		Reserved	
	[18:17]	bcm_dac	DAC BCLK frequency	
			00=BCM function disabled	
			01=MCLK/4	
			10=MCLK/8	
			11=MCLK/16	
	[16]		Reserved	

	[15:12]	sr_dac	DAC sample rate control	
			MCLK = 12.288M MCLK=11.2896M	
			4'b0011 = 8k 4'b1011=8.0182k	
			4'b0100 = 12k 4'b1100=11.025k	
			4'b0101 = 16k 4'b1101=22.05k	
			4'b1110 = 24k 4'b1000=44.1k	
			4'b0110 = 32k 4'b1111=88.2k	
			4'b0000 = 48k 4'b1010=176.4k	
			4'b0111 = 96k Default = 44.1k	
			4'b0010=192k	
			4'b0001=384k	
			Default = 48k	
	[11]	ahb2pcm	0 = iis data from ahb	
	[10]	pcm2ahb	0= iis data to ahb	
	[9]	adc2pcm	IIS/SPDIF data source	
			1 = adc data	
			0 = fifo data	
	[8]	pcm2dac	DAC data source	
			1 = IIS/SPDIF data	
			0 = fifo data	
	[7]	bclkinv	BCLK invert bit(for master and slave modes)	
			0 = BCLK not inverted	
			1 = BCLK inverted	
	[6]	ms	Master/Slave mode control	
			1 = Enable Master mode	
			0 = Enable slave mode	
	[5]	lrswap	Left/Right channel swap	
		i i i	1 = swap left and right DAC data in audio	
C			interface	
			0 = output left and right data as normal	
	[4]	lrp	Right, left and i2s modes – LRCLK polarity	
			1 = invert LRCLK polarity	
			0 = normal LRCLK polarity	
	[3:2]	wl	Audio Data Word Length	
			11 = 32 bits	
			10 = 24 bits	
			01 = 20 bits	
			00 = 16 bits	
	[1:0]	format	Audio Data Format Select	
			11 = DSP Mode	
			10 = I2S Format	
			01 = Left justified	
			00 = reserved(do not use this setting)	
0x0c	[31:21]		Reserved	0xffff

DAC volume	[20]	dvu	1: enable, (bit[20] bit[8])	
	[19:12]	rdacvol	Right DAC Digital volume control similar to	
			LDACVOL	
	[11:9]		Reserved	
	[8]	dvu	1: enable, (bit[20] bit[8])	
	[7:0]	ldacvol	Left DAC Digital Volume Control	
			0000 0000 = Digital mute	
			$0000\ 0001 = -127$ dB	
			$0000\ 0010 = -126.5$ dB	
			0.5dB steps up to	
			1111 1111 = 0dB	
0x10	[31]	vroi	VREF to analogue output resistance	0x2dc3
Additional			0:1.5k	
control			1:40k	
	[30:29]	dmonomix	DAC mono mix	
			00:stereo	
			01:mono(L+R)/2into DACL,'0'into DACR	
			10:mono(L+R)/2into DACR,'0'into DACL	
			11: mono(L+R)/2into DACL and DACR	
	[28]	dacinv	DAC phase invert	
			0:non-inverted	
			1:inverted	
	[27]	toen	Timeout enable	
			0:timeout disable	
			1:timeout enable	
	[26]	hpflren	Adchpd_dmic and hpflren_dmic together	
			determine high-pass filter behaviour	
	[25]	reg_tri	Tristates ADCDATA and switches LRC and	
C			BCLK to inputs	
			0=adcdat is an output,lrc and bclk are inputs or	
			outputs	
			1=adcdat is tristated, lrc and bclk are inputs	
	[24]		Reserved	
	[23:22]	codec_mic	Mic signal to dac mixer volume	
			00=-6dB 01=-9dB 10=-12dB 11=-15dB	
	[21]	dacosr	DAC oversample rate select	
			1=64x(lowest power)	
			0=128x(best SNR)	
	[20:9]		Reserved	
	[8]	lavu	ADC volume update	
			0 = store adcvol in intermediate latch(no gain)	
			change)	
			1 = update left and right channel gains	

	[7:0]	ladcvol	ADC digital volume control	
			00000000=digital mute	
			00000001=-97dB	
			00000010=-96.5dB	
			0.5dB steps up to 11111111=+30dB	
0x14	[31]	codec_rstn_scf	DAC module reset of SCF	0x80000000
Power			1=reset 0=work	
management	[30]	codec_en_vmid	VMID enable	
			0=power down 1=power up	
	[29]	codec_en_ibias	VREF	
			0=power down 1=power up	
	[28]	codec_en_micb	Micbias buffer	
			0=power down 1=power up	
	[27]	codec_en_llinein	Left linein buffer	
			0=power down 1=power up	
	[26]		reserved	
	[25]	codec_en_vref	HP buffer	
			0=power down 1=power up	
	[24]	codec_mic2o	Mic to dac mixer enable	
			0=disable	
			1=enable	
	[23:16]		reserved	
	[19]	adc_rx_fifo_clr	write 1 to clear adc rx fifo, including address	
			and data. Write only.	
	[18]	dac_tx_fifo_clr	write 1 to clear dac tx fifo, including address	
			and data. Write only.	
	[17]	iis_rx_fifo_clr	write 1 to clear iis rx fifo, including address and	
			data. Write only.	
	[16]	iis_tx_fifo_clr	write 1 to clear iis tx fifo, including address and	
			data. Write only.	-
	[15]	codec_en_lpga	1:PGA enable , default 0	-
	[14]	codec_en_rpga	1:PGA enable , default 0	-
	[13]	codec_en_rhp	R_Channel HP enable	
			0=disable 1=enable	-
	[12]	codec_en_lhp	L_Channel HP enable	
			0=disable 1=enable	
	[11]	codec_en_hp_vmid	LOUT/ROUT COMMON GROUND Enable (H	
			PCOM) .	
			Enables HPCOM on then LOUT/ ROUT can ca	
			pless connect to headphone	
			0: Disable HPCOM drive 1: Enable HPCOM d	
			rive	1
	[10:9]		reserved	

	[8]	digenb	Master clock disable	
			0=master clock enabled	
			1=master clock disabled	
	[7]	codec_en_radc	ana_en,codec_en_adc drive to top	
	[6]	iis_clr_reg	I2S reset	
			0=reset 1=work	
	[5]	adc_clr_reg	ADC reset	
			0=reset 1=work	
	[4]	dac_clr_reg	DAC reset	
			0=reset 1=work	
	[3]		Reserved	
	[2]	dacr_en	DAC right enable	
			0=power down 1=power up	
	[1]	dacl_en	DAC left enable	
			0=power down 1=power up	
	[0]	codec_en_ladc	ana_en,codec_en_adc drive to top	
0x18	[31]		Reserved	0x3333
Fifo depth	[30:25]	codec_iplus	0 = normal ibias current	
control			l = adding ibias current codec_inlus[5] HP ibias current	
			codec_iplus[4] R-dac channel ibias current	
			codec_iplus[3] L-dac channel ibias current codec_iplus[2] adc ibias current(else on1st)	
			codec_iplus[1] adc op1st ibias current	
	524.173		codec_iplus[0] pga ibias current	
	[24:16]		Reserved	
	[15:12]	iis_tx_trig	is tx filo dma request threshold, when the	
		\boldsymbol{K}	number of empty units is larger or equal than	
	F11 01		this number, send dma request	
	[11:8]	iis_rx_trig	is rx filo dma request threshold, when the	
C			number of occupied units is larger or equal than	
			this (number + 1), send dma request	
	[7:4]	dac_tx_trig	dac tx fifo dma request threshold, when the	
			number of empty unit is larger or equal than this	
			number, send dma request	
	[3:0]	adc_rx_trig	adc rx fifo dma request threshold, when the	
			number of occupied unit is larger or equal than	
			this (number + 1), send dma request	
0x1c	[31:8]		Reserved	0x00
Test mode	[7]	bcm_gate_en	Enable BCLK clock gating	
	[6:0]		Reserved	
0x20	[31:0]	adc_rx_fifo	DMA read adc_rx_fifo, read only	0x00
0x24	[31:0]	dac_tx_fifo	DMA write dac_tx_fifo, write only	0x00
0x28	[31:0]	iis_rx_fifo	DMA read iis_rx_fifo, read only	0x00

0x2c		[31	:0]	iis_tx_fifo			DMA write iis_tx_fifo, write only					0x00							
*	When	read	any	oher	address	from	codec,	read	data	is	{24'h0,	iis rx	fifo	empty,	iis	rx fi	fo t	full,	,

iis_tx_fifo_empty, iis_tx_fifo_full, adc_rx_fifo_empty, adc_rx_fifo_full, dac_tx_fifo_empty, dac_tx_fifo_full}.

4.10.1 IIS interface

The IIS interface supports ADCDAT output, DMA FIFO output, DMA FIFO input and DACDAT input. It supports several data format such as IIS, Left_justified, DSP, Right_justified, and it supports 16bit, 20bit, 24bit, 32bit word length. Figure9 to figure 12 show the timing sequence example for different format.

Figure 10. Left Justified Audio Interface (assuming n-bit word length)

Figure 11. I2S Justified Audio Interface (assuming n-bit word length)

Figure 12. Right Justified Audio Interface (assuming n-bit word length)

Figure 13.DSP Audio Interface (assuming n-bit word length)

4.10.2 SPDIF interface

The SPDIF is a point-to-point protocol for serial transmission of digital audio through a single transmission line. It provides two channels for audio data, a method for communicating control information and some error detection capabilities. The control information is transmitted as one bit per sample and accumulates in a block structure. The data is bi-phase encoded, which enables the receiver to extract a clock from the data. Coding violations, defined as preambles, are used to identify sample and block boundaries.

The SPDIF format is designed to transmit audio data. Each sample of audio data is packetized into a 32-bit sub-frame (see Figure 13) that includes additional information such as parity, validity, and user-definable bits. A frame is composed of two sub-frames, a block consists of 192 frames (see Figure 14). The first sub-frame normally starts with preamble X. However the preamble changes to preamble Z once every 192 frames. This defines the block structure used to organize the channel status information. The second sub-frame always starts with preamble Y. Figure 15 shows preamble X, preamble Y and preamble Z.

Figure 15. SPDIF block structure

	Biphase pattern Prev.'s last cell=0	Biphase pattern Prev.'s last cell=0	channel
x	11100010	00011101	Ch.A(left)
у	11100100	00011011	Ch.B(right)
z	11101000	00010111	Ch.A(Block start)

Figure 16. Preamble configuration

The preamble X, Y, Z is not the same with the data encode. The data is bi-phase encode (see Figure 17). Coding violation, defined as preambles, are used to identify sample and block boundaries.

Figure 17. Bi-phase encode

4.11 IIC

IIC bus interface controller is an APB device, it allows the host processor to serve as a master or slave in the IIC bus. Data are transmitted to and received from the IIC bus via a buffered interface.

It Supports the stand and fast modes by programming the clock division register, Supports the 7-bit, 10-bit, and general-call addressing modes. It has glitch suppression capability through the debounce circuit. The salve address is Programmable, It supports the master-transmit, master-receive, slave-transmit, and slave-receive modes, and supports the multi-master mode also.

Figure 18. IIC single write and IIC burst wirte

Figure 19. IIC single read and IIC burst read

Table 18 IIC controller module register list (BaseAddr=0x4001_1c00)

Oddset Address	Туре	Description	Reset Value
0X00	R/W	IIC Control Register(CR)	0X0000_0000
0X04	R/RC	IIC Statsus Register(SR)	0X0000_0000
0X08	R/W	IIC Clock Division Register(CDR)	0X0000_0000
0X0C	R/W	IIC Data Register(DR)	0X0000_0000
0X10	R/W	IIC Slave Address Register(SAR)	0X0000_0000
0X14	R/W	IIC Setup/Hold Time and Glitch Suppression Setting	0X0000_0401
		Register(TGSR)	
0X18	R	IIC Bus Monitor Register(BMR)	
0X30	R	IIC Revision Register	0X0000_0003

I2C Control Register(CR)	offset:0x00	default:0x0000	_0000
--------------------------	-------------	----------------	-------

[31:18]	reserved		
[17]	Test_bit	R/W	Special test mode; it must be set to 0.
[16]	SDA_LOW	R/W	If set, the SDAout is tied to 0.
[15]	SCL_LOW	R/W	If set, the SCLout is tied to 0.
			If set, this bit enables I2C controller to interrupt the
[14]	STARTI_EN	R/W	host
			processor when I2C controller detects a start condition
			happening on the I2C bus.
			If set, this bit enables I2C controller to interrupt the
[13]	ALI_EN	R/W	host

			processor when I2C controller loses arbitration in the
			master mode.
			If set, this bit enables I2C controller to interrupt the
[12]	SAMI_EN	R/W	host
			processor when I2C controller detects a slave address
			that
			matches the SAR register or a general call address (when
			GC_EN is set).
			If set, this bit enables I2C controller to interrupt the
[11]	STOPI_EN	R/W	host
			processor when I2C controller detects a stop condition
			happening on the I2C bus.
			If set, this bit enables I2C controller to interrupt the
[10]	BERRI_EN	R/W	host
			processor when I2C controller detects non-ACK
			responses from the slave device after one byte of data
			has
			been sent in the master mode.
			If set, this bit enables I2C controller to interrupt the
[9]	DRI EN	R/W	host
	_		processor when I2C controller DR register has
			received one data byte from the I2C bus
			If set, this bit enables I2C controller to interrupt the
[8]	DTI_EN	R/W	host
			processor when I2C controller DR register has
			transmitted one data byte onto the I2C bus.
[7]	TB_EN	R/W	When Transfer Byte Enable (TB_EN) is set, I2C
			controller is ready to receive or transmit one byte.
			Otherwise,I2C controller will insert the wait state by
			pulling SCLout low in the I2C bus.
[6]	ACK/NACK	R/W	The acknowledge signal sent by I2C controller when
			I2C controller is in master-receive or slave-receive
			mode
			0: ACK
			1: NACK
[5]	STOP	R/W	I2C controller initiates a stop condition after transferring
			the next data byte on the I2C bus when I2C is in the
			master mode.
[4]	START	R/W	I2C controller initiates a start condition when I2C bus is
			idle, or initiates a repeated start condition after
			transferring the next data byte on the I2C bus in the
			master mode.
[3]	GC_EN	R/W	Enable I2C controller to respond to a general call
			message as a slave

[2]	SCL_EN	R/W	Enable I2C controller clock output for the master mode
			operation
[1]	I2C_EN	R/W	Enable the I2C bus interface controller
[0]	I2C_RST	R/W	Reset the I2C controller
			This bit will be automatically cleared after two PCLK
			clocks.

I2C Status Register (SR)

offset:0x04 default:0x0000_0000

[31:12]	reserved		
[11]	START	RC	Set when I2C controller detects a start condition on the
			I2C bus
			Set when I2C controller loses arbitration when
[10]	AL	RC	operating
			in master mode.
[9]	GC	RC	Set when I2C controller receives a slave address that
			matches the general call address, when I2C controller
			is operating in the slave mode
[8]	SAM	RC	Set when I2C controller receives a slave address that
			matches the address in the slave register (SAR) when
			I2C controller is operating in the slave mode
[7]	STOP	RC	Set when I2C controller detects a stop condition in the
			I2C bus.
			Set when I2C controller detects non-ACK responses
[6]	BERR	RC	from
			the slave device after one byte of data has been
			transmitted when I2C controller is operating in the
			master mode
			Set when the data register (DR) received one new data
[5]	DR	RC	byte
			from the I2C bus
			Set when the data register (DR) transmitted one data byte
[4]	DT	RC	to
			the I2C bus
			Set when the I2C bus is busy, but the I2C controller is
[3]	BB	R	not
			involved in the transaction
[2]	I2CB	R	Set when the I2C controller is busy, i.e. during the time
			period between the START and STOP
[1]	ACK	R	Set when the I2C controller receives or sends
			non-acknowledgements
			Set when the I2C controller serves in a master-receive
[0]	RW	R	or
			slave-transmit mode.
L			

* RC means read and clear

I2C Clock Division Register (CDR) offset:0x08 default:0x0000_0000

[31:1	8]	reserved		
				Counter value used to generate an I2C clock (SCLout)
[17:0)]	COUNT	R/W	from
				the internal bus clock PCLK. The relation between
				PCLK and I2C bus clock (SCLout) is
				shown in the following equation, where GSR is
				TGSR[12:10]
				SCLout = PCLK/(2*(COUNT + 2) + GSR)

I2C Data Register (DR)

offset:0x0C default:0x0000 0000

[31:8]	reserved		
[7:0]	DR	R/W	Buffer for I2C bus data transmission and reception, I2 C data wirte or read window.

I2C Slave Address Register (SAR)

offset:0x10 default:0x0000_0000

[31]	EN10	R/W	10-bit addressing mode enable bit
[30:10]	reserved		
[9:7]	SAR	R/W	The most significant 3-bit address to which the I2C
			controller responds when I2C operates in 10-bit
			addressing slave
			mode (EN10 =1). When $EN10 = 0$, the I2C controller
			ignores these three bits.
[6:0]	SAR	R/W	The 7-bit address to which the I2C controller responds
		Ť	when the I2C operates in the 7-bit addressing slave mode
			(EN10=0)
			or the least significant 7-bit address to which the I2C
			controller responds when the I2C operates in the 10-bit
			addressing slave mode.

I2C Set/Hold Time & Glitch Suppression

Setting Register (TGSR)

offset:0x14 default:0x0000_0401

[31:13]	reserved		
			These bits define the values of PCLK clock period when
[12:10]	GSR	R/W	the
			I2C Bus Interface has built-in glitch suppression logic.
			Glitch is suppressed
			according to "GSR * PCLK" clock period.
[9:0]	TSR	R/W	These bits define the delay values of PCLK clock cycles
			that the data or acknowledgement will be driven into the

I2C SDA bus after I2C SCL
bus goes low. The actual delay value is GSR+TSR+4.
Figure- 3 shows the relationship.
Note: TSR cannot be set to zero.

I2C Bus Monitor Register (BMR)

offset:0x18

[31:2]	reserved		
[1]	SCLin	R	This bit continuously reflects the value of the SCLin pin.
[0]	SDAin	R	This bit continuously reflects the value of the SDAin pin.

4.12 UART

CJC6833A UART can be accessed via AHB bus or APB bus. CM0+ configures uart register and transfers data with uart by Ahb2apb Bridge , DAM translates data with uart by AHB bus.

The system assigns two dedicated DMA channel to the UART_TX and UART_RX data transfer. UART have a programmable interrupt to the system.

UART controller is a serial communication element that implements the most common infrared communication protocols. It also support IRDA1.3 SIR protocol which is used in household electrical device IR transmitter and receiver (38KHz).

UART support two work mode: UART mode, SIR mode.

The UART mode is default enabled after power up or system reset. This mode uses a wired interface for serial communication with a remote device or a modem. It can operate in a full-duplex mode, data transmission and reception can take place simultaneously. It works as a regular serial asynchronous communication controller that converts the parallel data received from the CPU or the DMA controller into serial data. It also converts the serial data received on the serial input terminal into parallel data. The format of the serial data stream is shown in figure 19. A data character contains 5 to 8 data bits. It is preceded by a start bit and is followed by an optional parity bit and a stop bit. Data is transferred in little-endian order (Least significant bit first). The clock for both transmit and receive channels is provided by an internal baud generator that divides the pre-scaled clock by any divisor value from 1 to 216 - 1. The output clock frequency of the baud generator must be programmed to be sixteen times the baud rate value. The baud generator input clock is derived from io_irda_uclk clock through a programmable prescaler. Both the communications format and baud rate must be programmed properly before operation.

Figure 20. UART data representation and sampling

SIR (serial IR) mode supports bi-directional data communication with a remote device using the infrared radiation as the transmission medium. IrDA 1.3 SIR allows serial communication at baud rates of up to 115.2 kbps. The format of the serial data is similar to the UART data format. Each data word is sent serially beginning with a zero value start bit, followed by 8 data bits, and ending with one stop bit with a binary value of one. Sending a single infrared pulse signals a zero. A one is signaled by not sending any pulse. The width of each pulse can be either 1.6 μ s or 3/16 of a single bit time. (1.6 μ s equals 3/16 of a bit time at 115.2 kbps). This way, each word begins with a pulse for the start bit. The device operation in the IrDA SIR mode is similar to the operation in UART mode. The main differences are that, those data transfer operations are normally performed in half-duplex fashion.

Each data byte starts with a start bit (0), 1 byte of data, and then ends with at least a stop bit (1). Each serial data bit is encoded before transmission and decoded after reception. A 1 is decoded with no IR pulse and a 0 is decoded by sending 3/16ths of one bit time IR pulse. Similarly, the received serial pulse is decoded as a 0 and the absence of an IR pulse is decoded as a 1, Please refer to Figure 20.

Figure 21. SIR encoding

Offset	Туре	Width	Name	Description	Reset Value			
	UART/Infrared SIR Mode							
+0X00	R	8	RBR	Receiver buffer register	0x00			
	W	8	THR	Transmitter holding register	0x00			
+0X04	R/W	4	IER	Interrupt enable register	0x00			
+0X08	R	8	IIR	Interrupt identification register	0x01			
	W		FCR	FIFO control register	0x00			
+0X0C	R/W	8	LCR	Line control register	0x00			
+0X10	R/W	7	MCR	Modem control register	0x00			
+0X14	R	8	LSR	Line status register	0x00			
	W		TST	Testing register	0x60			
+0X18	R	8	MSR	Modem stutas register	0x00			
+0X1C	R/W	8	SPR	Scratch pad register	0x00			
	Registers accessible whRen DLAB = 1							
+0X00	R/W	8	DLL	Baud rate divisor latch least significant byte	0x01			
+0X04	R/W	8	DLM	Baud rate divisor latch most significant byte	0x00			
+0X08	R/W	5	PSR	Prescaler register	0x01			

Table 10 Uart module register list (BaseAddr=0x4001_0c00) Image: Comparison of the second second

Rece	eiver	Register	offset:	0x00 default:0x00
[7:0]		RBR	R	Receive Data Port

Tı	ransmitter	Holding Register	offset:(0x00 default:0x00
	[7:0]	THR	W	Transmit Data Port

Baud Rate Divisor Latch LSB offset:0x00 default:0x01

[7:0]	DLL	R/W	Baud Rate Divisor Latch Least Significant Byte
* A::			

* Accessible when DLAB = 1

Baud Rate Divisor Latch MSB	offset:0x04	default:0x00	
-----------------------------	-------------	--------------	--

[7:0]	DLM	R/W	Baud Rate Divisor Latch Most Significant Byte	
* Accessible when DLAB = 1				

Interrupt Enable Register

offset:0x04 default:0x00

[7:4]	reserved		
[3]	MODEM Status	R/W	This bit enables the modem status interrupt when set to logic 1.
[2]	Receiver Line Status	R/W	This bit enables the Receiver Line Status Interrupt when set to logic 1.
[1]	THR Empty	R/W	This bit enables the Transmitter Holding Register Empty Interrupt
			when set to logic 1.
	Receiver		
[0]	Data Available	R/W	This bit enables the Received Data Available Interrupt (and
			character reception timeout interrupts in the FIFO mode) when set
			to logic 1.

Interrupt Identification Register offset:0x08 default:0x01 FIFO mode enable [7:6] R These two bits are set when FCR[0] is set as 1. reserved [5] Tx FIFO full R This bit is set as 1 when TX FIFO is full. [4] FIFO mode only R In the 16450 mode, this bit is 0. In the FIFO mode, this bit is set [3] along with bit 2 when a timeout interrupt is pending. [2:1] Interrupt Identification R These bits identify the highest priority interrupt that is pending. Code [0] Interrupt Pending R This bit can be used in a prioritized interrupt environment to indicate whether an interrupt is pending. 0: An interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine. 1: No interrupt is pending.

FIFO Control Register		offset:	0x08 default:0x00
[7:6]	RXFIFO_TRGL	W	Used to set the trigger level of the RX FIFO interrupt.
[5:4]	TXFIFO_TRGL	W	Used to set the trigger level of the TX FIFO interrupt.
[3]	DMA Mode	W	This bit selects the UART DMA mode. The DMA mode affects the
			way in inwhich the DMA signaling outputs pins (irda_nrxrdy and
			irda_ntxrdy)
			behave.
[2]	TX FIFO Reset	W	Setting this bit to logic 1 clears all bytes in the TX FIFO and resets its
			counter logic to 0. The shift register is not cleared, so any reception
			active will continue.
			This bit will automatically return to zero.
[1]	RX FIFO Reset	W	Setting this bit to logic 1 clears all bytes in the Rx FIFO and resets its
			counter logic to 0. The shift register is not cleared, so any reception
			active will continue. Setting this bit also clears the Status FIFO.
			This bit will automatically return to zero.
[0]	FIFO Enable	W	Set this bit to logic 1 enables both the transmit and receive FIFOs
			(And Status FIFO). Changing this bit automatically resets both FIFOs.
			In a FIR mode, the device driver should always set this bit as 1.

Prescaler Register

offset:0x08 default:0x01

[7:5]	reserved			
[4:0]	PSR	R/W	Prescaler Value	X
* Acces	sible when $DIAB = 1$			

Accessible when D

Line Contr	ol Register	offset:	Jx0C default:00
[7]	DLAB	R/W	Divisor Latch Access Bit (DLAB)
			This bit must be set in order to access the DLL, DLM and PSR
			registers which
			program the division constants for the baud rate divider and the
			prescaler.
[6]	Set Break	R/W	This bit causes a break condition to be transmitted to the receiving
			UART. When it is set to logic 1, the serial output (io_irda_sout) is
			forced to the
			Spacing (Logic 0) state. The break is disabled by setting bit 6 to 0. The
			Break
			Control bit acts only on io_irda_sout and has no effect on the
			transmitter logic,
			so if several characters are stored in the transmit FIFO, they will be
			removed
			from this FIFO and passed sequentially to the Transmitter Shift
			Register which
			serializes them, even if Set Break is set. This fact can be useful to
			establish the
			break time making use of the THR Empty and Transmitter Empty flags

ī

		of the
		LSR. Firmware can follow the sequence below to assure no erroneous
		or
		extraneous characters will be transmitted because of the break:
		Set break when transmitter is idle (LSR bit 6).
		Write a character with any value to THR.
		Wait for the transmitter to become idle (LSR bit 6), and clear break
		when
		normal transmission has to be restored.
Stick Parity	R/W	When bits 3, 4 and 5 are logic 1, the Parity bit is transmitted and
		checked as 0.If bits 3 and 5 are 1 and bit 4 is 0, then the Parity bit is
		transmitted and checked
		as 1. If bit 5 is 0, Stick Parity is disabled.
Even Parity	R/W	This bit is the Even Parity Select bit. When bit 3 is 1 and bit 4 is 0, an
		odd number of logic 1s is transmitted or checked in the data word bits
		and Parity
		bit.
Parity Enable	R/W	This bit is the Parity Enable bit. When this bit is a 1, a Parity bit is
		Generated (Transmit data) or checked (Receive data) between the last
		data word bit and
		Stop bit of the serial data. When bit 3 is 1 and bit 4 is a 1, an even
		number of 1s
		is transmitted or checked.
Stop Bits	R/W	This bit selects the number of stop bits to be transmitted. If cleared,
		only one stop bit will be transmitted. If set, two stop bits (1.5 with
		5-bit data) will be
		transmitted before the start bit of the next character. The receiver
		always
		checks only one stop bit.
WL1	R/W	This bit along with WL0 defines the word length of the data being
		transmitted and received.
WL0	R/W	This bit along with WL1 defines the word length of the data being
		transmitted and received.
	Stick Parity Even Parity Parity Enable Stop Bits WL1 WL0	Stick ParityR/WEven ParityR/WParity EnableR/WStop BitsR/WWL1R/WWL0R/W

Modem Control Register offset:0x10 default:0x00

[7]	reserved		
[6]	Out3	R/W	This bit controls the general purpose output io_irda_nout3
			(General-purpose output 3, active low) . A 1 in this bit makes
			io_irda_nout3 output a 0. When this bit is cleared, io_irda_nout3
			outputs a 1.
[5]	DMAmode2	R/W	This bit selects the UART/SIR DMA mode. The DMA mode2 affects
			irda_ntxrdy : The UART/SIR mode is ready to receive the characters
			from the memory to be sent, low active.
			Mode 1: In the FIFO mode (FCR $[0] = 1$) when DMAmode2 = 0 and

			FCR[3] = 1 and there are no characters in the TX FIFO, the
			irda_ntxrdy pin will go low active.
			This pin will become inactive when the TX FIFO is completely full.
			Mode 2: In the FIFO mode (FCR $[0] = 1$) when DMAmode2 = 1
			(FCR[3] is "don't care") and the number of characters in the TX FIFO
			is smaller than the TX FIFO trigger level, the irda ntxrdy pin will go
			active (Low). This signal will go inactive (High) when irda tx ack is
			sampled high.
			irda rx ack. This signal is used to de-assert irda nrxrdy in the DMA
			mode 2
			irda tx ack. This signal is used to de-assert irda attrdy in the DMA
			mad_w_uew. This signal is used to be assert had_heady in the Divit
[4]	Loop	R/W	Loon back mode control bit. Loon back mode is intended to test the
[[']	Loop	10 11	UART or SIR communication
[3]	Out?	D/W	This bit controls the general number output in irde nout?
[3]	Outz	IC/ W	(General purpose output 2 _ active low) A 1 in this hit makes
			in inde nout? output 2.0 When this hit is cleared in inde nout?
			outputs a 1
[2]	0	D/W/	This his control also consultant to independent
[2]	Outi	K/W	I his bit controls the general purpose output lo_irda_noutl
			(General-purpose output 1, active low). A 1 in this bit makes
			10_irda_nout1 output a 0. When this bit is cleared, 10_irda_nout1
F13		D/IV	
	RTS (Request to Send)	R/W	This bit controls the "request to send" output (10_irda_nrts, active
			low). A 1 in this bit makes io_irda_nrts output a 0. When this bit is
			cleared, io_irda_nrts outputs a 1. io_irda_nrts : Request To Send
			This signal is controlled by a register's bit. When low, this signal
			informs the modem or data set that the UART is ready to exchange
			data. This output signal can be set to an active low by programming bit
			1 of the Modem Control Register. A system reset operation sets this
			signal to be inactive (High). The loop mode operation holds this signal
			in its inactive state.
[0]	DTR (Data Terminal	R/W	This bit controls the "data terminal ready" active low output
	Ready)		io_irda_ndtr. A 1 in this bit makes io_irda_ndtr output a 0. When
			this bit is cleared, io_irda_ndtr outputs a 1.
			io_irda_ndtr: Data Terminal Ready
			This signal is controlled by a register's bit. When low, this signal
			informs the modem or data set that the UART is ready to establish a
			communication link. This output signal can be set to an active low by
			programming bit 0 of the Modem Control Register to a high level. A
			system reset operation sets this signal to its inactive (High) state. The
			loop mode operation holds this signal in its inactive state.

Line Status	Register	offset:(0x14 default:0x60
[7]	FIFO Data Error	R	If the FIFO is disabled (16450 mode), this bit is always zero. If the FIFO is active, this bit will be set as soon as any data character in the receiver' s FIFO has parity or framing error or the break indication active. This bit is cleared when the CPU reads the LSR and the rest of the data in the receiver' s FIFO do not have any of these three associated flags on.
[6]	Transmitter Empty	R	This bit is 1 when both the THR (Or TX FIFO) and the TSR (Transmitter Shift Register) are empty. Reading this bit as 1 means that no transmission is currently taking place in the io_irda_sout output pin, and that the transmission line is idle. As soon as new data is written in the THR, this bit will be cleared.
[5]	THR Empty	R	This bit indicates that the UART is ready to accept a new character for
			transmission. In addition, this bit causes the UART to issue an interrupt to the CPU when the Transmit Holding Register Empty Interrupt enable bit (IER [1]) is set high.
E 43		P	This bit is set to 1 if the receiver' s line input io_irda_sin was held at
[4]		ĸ	for a complete character time. That is to say, the positions corresponding to the start bit, the data, the parity bit (if any) and the (first) stop bit were all detected as zeroes.
523			This bit indicates that the received character did not have a valid stop
	Framing Error	ĸ	bit (i.e., a 0 was detected in the (first) stop bit position instead of a 1). This bit is queued in the receiver' s FIFO in the same way as the Parity Error bit. When a framing error is detected, the receiver tries to resynchronize: if the next sample is again a zero, it will be taken as the beginning of a
			possible new start bit.
			This bit is cleared as soon as the LSR is read.
[2]	Parity Error	R	When this bit is set, it indicates that the parity of the received character is wrong
[1]	Overrun Error	R	When this bit is set, a character has been completely assembled in the Receiver Shift Register without having free space to put it in the

			receiver' s FIFO or holding register.
[0]	Data Ready	R	This bit is set if one or more characters have been received and are
			Waiting in the receiver' s FIFO for the user to read them. It is cleared
			to a logic 0 by
			reading all of the data in the Receiver Buffer Register or the FIFO.

Testing Register offset:0x14 default:0x00

[7:5]	reserved		
[4]	TEST_CRC_ERR	W	When set, UART generates incorrect CRC during FIR transmission.
			When set, UART generates incorrect 4PPM encoding chips during FIR
[3]	TEST_PHY_ERR	W	transmission.
[2]	TEST_BAUDGEN	W	This bit is used to improve baud rate generator toggle rate.
			When set, UART generates a logic 0 STOP bit during UART
[1]	TEST_FRM_ERR	W	transmission.
			When set, UART generates incorrect parity during UART
[0]	TEST_PAR_ERR	W	transmission.

Modem St	atus Register	offset:	0x18 default:0x00
[7]	DCD	R	Data Carrier Detect (DCD), which is the complement of the
			io_irda_ndcd input. io_irda_ndcd: Data Carrier Detect This signal is used to provide the flags and an interrupt. When low, this signal indicates that the data carrier has been detected by the modem or data set. This signal is a modem status input whose conditions can be tested by the CPU reading bit 7 of the Modem Status Register. Bit 7 is the complement of the io_irda_ndcd signal. Bit 3 of the Modem Status Register indicates whether the io_irda_ndcd input has changed the state since the previous reading of the Modem Status Register.
[(]	DI	P	io_irda_ndcd has no effect on the receiver.
[6]	RI	ĸ	Ring Indicator (RI), which is the complement of the io_irda_nri input.
			This signal is used to provide the flags and an interrupt. When low, this signal indicates that a telephone ringing signal has been received by the modem or dataset. This signal is a modem status input whose conditions can be tested by the CPU reading bit 6 of the Modem Status Register. Bit 6 is the complement of the io_irda_nri signal. Bit 2 of the Modem Status Register indicates whether the io_irda_nri input signal has changed from a low to a high state since the previous reading of the Modem Status Register.
[5]	DSR	R	Data Set Ready (DSR), which is the complement of the io_irda_ndsr
			input. io_irda_ndsr: Data Set Ready
			This signal is used to provide the flags and an interrupt. When low, this
			signal indicates that a modem or data set is ready to establish the
			communication link with the UART. This signal is a modem status

			input whose condition can be tested by the CPU reading bit 5 of the
			Modem Status Register. Bit 5 is the complement of the jo irda ndsr
			signal Bit 1 of the Modern Status Register indicates whether the
			io irdo nder input has changed the state since the pravious reading of
			the Madeur Chattar Desister
			the Modem Status Register.
[4]	CTS	R	Clear To Send (CTS), which is the complement of the io_irda_ncts
			input.
			io_irda_ncts: Clear To Send
			This signal is used to provide the flags and an interrupt. When low, this
			signal indicates that a modem or data set is ready to exchange data.
			The io_irda_ncts signal is a modem status input whose conditions can
			be tested by the CPU reading bit 4 of the Modem Status Register. Bit 4
			is the complement of the io_irda_ncts signal. Bit 0 of the Modem
			Status Register indicates whether the io irda nets input has changed
			the state since the previous reading of the Modem Status Register.
			io irda nots has no effect on the transmitter.
[3]	Delta DCD	R	The delta-DCD flag. If set, it means that the jo irda ndcd input has
			changed since the last time the microprocessor read this bit.
			io irda nded input
			io irda ndcd. Data Carrier Detect
			This signal is used to provide the flags and an interrupt. When low this
			signal indicates that the data carrier has been detected by the modern
			or data gat. This signal is a modern status input whose conditions can
			be tested by the CDU are directive bit 7 after Madam Status Resistor Dir 7
			is the complement of the is inde used sized. Dit 2 of the Medan
			is the complement of the lo_irda_ndcd signal. Bit 5 of the Modem
			Status Register indicates whether the io_irda_ndcd input has changed
			the state since the previous reading of the Modem Status Register.
			10_1rda_ndcd has no effect on the receiver.
[2]	Trailing edge R1	R	This bit is set when a trailing edge is detected in the io_irda_nri input
			pin; that is to say, when io_irda_nri changes from 0 to 1.
			io_irda_nri: Ring Indicator
			This signal is used to provide the flags and an interrupt. When low, this
			signal indicates that a telephone ringing signal has been received by
			the modem or dataset. This signal is a modem status input whose
			conditions can be tested by the CPU reading bit 6 of the Modem Status
			Register. Bit 6 is the complement of the io_irda_nri signal. Bit 2 of the
			Modem Status Register indicates whether the io_irda_nri input signal
			has changed from a low to a high state since the previous reading of
			the Modem Status Register.
[1]	Delta DSR	R	If set, it means that the io_irda_ndsr input has changed since the last
			time the microprocessor read this bit.
			io_irda_ndsr: Data Set Ready
			This signal is used to provide the flags and an interrupt. When low, this
			signal indicates that a modem or data set is ready to establish the

			communication link with the UART. This signal is a modem status
			input whose condition can be tested by the CPU reading bit 5 of the
			Modem Status Register. Bit 5 is the complement of the io_irda_ndsr
			signal. Bit 1 of the Modem Status Register indicates whether the
			io_irda_ndsr input has changed the state since the previous reading of
			the Modem Status Register.
[0]	Delta CTS	R	If set, it means that the io_irda_ncts input has changed since the last
			time the microprocessor read this bit.
			io_irda_ncts: Clear To Send
			This signal is used to provide the flags and an interrupt. When low, this
			signal indicates that a modem or data set is ready to exchange data.
			The io_irda_ncts signal is a modem status input whose conditions can
			be tested by the CPU reading bit 4 of the Modem Status Register. Bit 4
			is the complement of the io_irda_ncts signal. Bit 0 of the Modem
			Status Register indicates whether the io_irda_ncts input has changed
			the state since the previous reading of the Modem Status Register.
			io_irda_ncts has no effect on the transmitter.

Scratch Pad Register

offset:0x1C default:0x00

[7:]	User Data	R/W	This 8-bit read/write register has no effect on the operation of the
			Serial Port. It is intended as a scratchpad register to be used by the
			programmer to hold data temporarily.

Prescaler dot Register

offset:0x20 default:0x00

[7:5]	reserved		
[4:0]	PSRDOT	R/W	Prescaler dot Value

Feature Register

offset:0x68 default:0x00

[7:5]	reserved		
[4]	IrDA_INSIDE	R	1: uart controller contains IrDA function
			0: uart controller is a pure UART
[3:0]	FIFO_DEPTH	R	4' b0001: TX/RX FIFOs are 16-byte deep
			4' b0010: TX/RX FIFOs are 32-byte deep
			4' b0100: TX/RX FIFOs are 64-byte deep
			4' b1000: TX/RX FIFOs are 128-byte deep

4.13 PWM

CJC6833A integrates four channel PWM as APB device. The PWM output signals are based on the pwm_clk pin and must be a minimum of 2 clock cycles wide. Various configurations can be programmed to adjust the period and the waveform of the output signals. Figure 22 shows the block diagram of PWM.

Figure 22. Block diagram of PWM

Table 11 PWM module register list (Baseaddr = 0x4001_1400)

Addr	Туре	Name	Bit	Description	Default
0x00	R/W	PWM0_	[31:6]	Reserved	0x0
		CTRL	[5:0]	PRESCALE	
				Determines the frequency of the PWM0 module clock	
				PSCLK_PWM = pwm_clk/(PWM0_CTRL+1)	
0x04	R/W	PWM0_	[31:11]	Reserved	0x0
		DUTY	[10]	FDCYCLE	
				PWM0 full duty cycle	
				0=PWM_OUT0 duty cycle is determined by DCYCLE	
				field	
				1=PWM_OUT0 is set high and does not toggle	
			[9:0]	DCYCLE	
				PWM0 duty cycle	
				Duty cycle of PWM_OUT0.	
0x08	R/W	PWM0_	[31:10]	Reserved	0x0
		PERVAL	[9:0]	PERVAL	
				PWM0 period control	
				The number of PSCLK_PWM cycle that comprise one	
				PWM_OUT0 cycle.	
0x0C	R/W	PWM1_	[31:6]	Reserved	0x0
		CTRL	[5:0]	PRESCALE	

				Determines the frequency of the PWM1 module clock	
				PSCLK_PWM = pwm_clk/(PWM1_CTRL+1)	
0x10	R/W	PWM1_	[31:11]	Reserved	0x0
		DUTY	[10]	FDCYCLE	
				PWM1 full duty cycle	
				0=PWM_OUT1 duty cycle is determined by DCYCLE	
				field	
				1=PWM_OUT1 is set high and does not toggle	
			[9:0]	DCYCLE	
				PWM1 duty cycle	
				Duty cycle of PWM_OUT1.	
0x14	R/W	PWM1_	[31:10]	Reserved	0x0
		PERVAL	[9:0]	PERVAL	
				PWM1 period control	
				The number of PSCLK_PWM cycle that comprise one	
				PWM_OUT1 cycle.	
0x18	R/W	PWM2_	[31:6]	Reserved	0x0
		CTRL	[5:0]	PRESCALE	
				Determines the frequency of the PWM2 module clock	
				PSCLK_PWM = pwm_clk/(PWM2_CTRL+1)	
0x1C	R/W	PWM2_	[31:11]	Reserved	0x0
		DUTY	[10]	FDCYCLE	
				PWM2 full duty cycle	
				0=PWM_OUT2 duty cycle is determined by DCYCLE	
				field	
				1=PWM_OUT2 is set high and does not toggle	
			[9:0]	DCYCLE	
				PWM2 duty cycle	
				Duty cycle of PWM_OUT2.	
0x20	R/W	PWM2_	[31:10]	Reserved	0x0
		PERVAL	[9:0]	PERVAL	
				PWM2 period control	
				The number of PSCLK_PWM cycle that comprise one	
				PWM_OUT2 cycle.	
0x24	R/W	PWM3_	[31:6]	Reserved	0x0
		CTRL	[5:0]	PRESCALE	
				Determines the frequency of the PWM3 module clock	
				PSCLK_PWM = pwm_clk/(PWM3_CTRL+1)	
0x28	R/W	PWM3_	[31:11]	Reserved	0x0
		DUTY	[10]	FDCYCLE	
				PWM3 full duty cycle	
				0=PWM_OUT3 duty cycle is determined by DCYCLE	
				field	
				1=PWM_OUT3 is set high and does not toggle	

			[9:0]	DCYCLE	
				PWM3 duty cycle	
				Duty cycle of PWM_OUT3.	
0x2C	R/W	PWM3_	[31:10]	Reserved	0x0
		PERVAL	[9:0]	PERVAL	
				PWM3 period control	
				The number of PSCLK_PWM cycle that comprise one	
				PWM_OUT3 cycle.	

Figure 23. shows the timing diagram of PWM.

Figure 23. timing diagram of PWM

4.14 TIMER

Timer module is an APB device, it provides three independent sets of 32-bit sub-timers, and the first sub-timer is the default sub-timer. Each sub-timer can use either internal system clock (PCLK) or external clock (EXTCLK) to increase or decrease the counting. Two match registers are provided for each sub-timer. Whenever the value of the match registers equals to any one of the sub-timers, the timer interrupt is triggered immediately. The issuance of the timer interrupt can be decided by the register setting when an overflow occurs. CJC6833A assigns 3 interrupt for timer.

Offset	Туре	Width	Name	Description	Reset
0x00	R/W	32	Tm1control	Timer1 control	0x
0x04	R/W	32	Tm1load	Timer1 auto reload value	0x
0x08	R/W	32	Tm1match	Timer1 match value	0x
			1		
0x0c	R/W	32	Tm1match	Timer1 match value	0x
			2		
0x10	R/W	32	Tm2control	Timer2 control	0x
0x14	R/W	32	Tm2load	Timer2 auto reload value	0x
0x18	R/W	32	Tm2match	Timer2 match value	0x
			1		
0x1c	R/W	32	Tm2match	Timer2 match value	0x
			2		

Table 12 Timer register list (BaseAddr = 0x4001_3000)

0x20	R/W	32	Tm3control	Timer3 control	0x
0x24	R/W	32	Tm3load	Timer3 auto reload value	0x
0x28	R/W	32	Tm3match	Timer3 match value	0x
			1		
0x2c	R/W	32	Tm3match	Timer3 match value	0x
			2		
0x30	R/W	12	Tmcr	Timer1, Timer2, Timer3 control register	0x0
0x34	R/W	9	Intrstate	Interrupt State of timer	0x0
0x38	R/W	9	Intrmask	Interrupt Mask of timer	0x0
0x3c	R	32	Tmrevision	Timer revision number	0x

Tm1Counter, Tm2Counter,

Tm3Counter		offset:0x	00/0x10/0x20 default:0x0000_0000
[31:0]	TMCounter	R/W	the counter registers of Timer1, Timer2, and Timer3

Tm1Load, Tm2Load, Tm3Load

[31:0] Tmload R/W Tm1Load, Tm2Load, and Tm3Load are the auto-reload registers for Timer1, Timer2, and Timer3, respectively.

Tm1Match1, Tm2Match1,

a3Match1		offset:0x	08/0x18/0x28 default:0x0000_0000
			Tm1Match1, Tm2Match1, and Tm3Match1 are the match registers of
[31:0]	TmMatch1	R/W	Timer1, Timer2, and
			Timer3, respectively. When the values of $counter(1 \sim 3)$ equal the
C			value of $Tm(1 \sim 3)$ Match1 and
			the Tm(1 ~ 3)Enable bit is set, then the tm(1 ~ 3)_intr will be
			triggered.
	13Match1 [31:0]	13Match1 [31:0] TmMatch1	13Match1 offset:0x [31:0] TmMatch1 R/W

Tm1Match2, Tm2Match2,

offset:0x0C/0x1C/0c2C default:0x0000 0000

Tr	n3Match2		offset:0x	0C/0x1C/0c2C default:0x0000_0000
				Tm1Match2, Tm2Match2, and Tm3Match2 are the match registers of
	[31:0]	TmMatch2	R/W	Timer1, Timer2, and
				Timer3, respectively. When the values of $counter(1 \sim 3)$ equal the
				value of $Tm(1 \sim 3)$ Match2 and
				the Tm $(1 \sim 3)$ Enable bit is set, then the tm $(1 \sim 3)$ _intr will be
				triggered.

TmCR		offset:0x	30 default:0x000
[11]	Tm3UpDown	R/W	Timer3 up or down count 0: Down count 1: Up count
[10]	Tm2UpDown	R/W	Timer2 up or down count 0: Down count 1: Up count
[9]	Tm1UpDown	R/W	Timer1 up or down count 0: Down count 1: Up count
[8]	Tm3OFEnable	R/W	Timer3 overflow interrupt enable bit 0: Disable 1: Enable
[7]	Tm3Clock	R/W	Timer3 clock source 0: PCLK 1: EXT3CLK
[6]	Tm3Enable	R/W	Timer3 enable bit 0: Disable 1: Enable
[5]	Tm2OFEnable	R/W	Timer2 overflow interrupt enable bit 0: Disable 1: Enable
[4]	Tm2Clock	R/W	Timer2 clock source 0: PCLK 1: EXT3CLK
[3]	Tm2Enable	R/W	Timer2 enable bit 0: Disable 1: Enable
[2]	Tm1OFEnable	R/W	Timer1 overflow interrupt enable bit 0: Disable 1: Enable
[1]	Tm1Clock	R/W	Timer1 clock source 0: PCLK 1: EXT3CLK
[0]	Tm1Enable	R/W	Timer1 enable bit 0: Disable 1: Enable
	,		

IntrState

offset:0x34 default:0x000

[8]	Tm3Overflow	R/W	Tm3Overflow interrupt 0: No effect 1: Tmr3 counter overflow
			Tm3Match2 interrupt 0: No effect 1: Tmr3 counter value equals
[7]	Tm3Match2	R/W	to the value in theTm3Match2 register.
			Tm3Match1 interrupt 0: No effect 1: Tmr3 counter value equals
[6]	Tm3Match1	R/W	to the value in theTm3Match1 register.
[5]	Tm2Overflow	R/W	Tm2Overflow interrupt 0: No effect 1: Tmr2 counter overflow
			Tm2Match2 interrupt 0: No effect 1: Tmr2 counter value equals
[4]	Tm2Match2	R/W	to the value in theTm3Match2 register.
			Tm2Match1 interrupt 0: No effect 1: Tmr2 counter value equals
[3]	Tm2Match1	R/W	to the value in theTm3Match1 register.
[2]	Tm3Overflow	R/W	Tm1Overflow interrupt 0: No effect 1: Tmr1 counter overflow
			Tm1Match2 interrupt 0: No effect 1: Tmr1 counter value equals
[1]	Tm3Match2	R/W	to the value in theTm3Match2 register.
			Tm1Match1 interrupt 0: No effect 1: Tmr1 counter value equals
[0]	Tm3Match1	R/W	to the value in theTm3Match1 register.

IntrMask		offset:0x	38 default:0x000
			Mask Tm3Overflow interrupt 0: No effect 1: Tmr3Overflow in
[8]	MTm3Overflow	R/W	IntrState will be masked.
			Mask Tm3Match2 interrupt 0: No effect 1: Tmr3Match2 in
[7]	MTm3Match2	R/W	IntrState will be masked.
			Mask Tm3Match1 interrupt 0: No effect 1: Tmr3Match1 in
[6]	MTm3Match1	R/W	IntrState will be masked.
			Mask Tm2Overflow interrupt 0: No effect 1: Tmr2Overflow in
[5]	MTm2Overflow	R/W	IntrState will be masked.
			Mask Tm2Match2 interrupt 0: No effect 1: Tmr2Match2 in
[4]	MTm2Match2	R/W	IntrState will be masked.
			Mask Tm2Match1 interrupt 0: No effect 1: Tmr2Match1 in
[3]	MTm2Match1	R/W	IntrState will be masked.
			Mask Tm1Overflow interrupt 0: No effect 1: Tmr1Overflow in
[2]	MTm1Overflow	R/W	IntrState will be masked.
			Mask Tm1Match2 interrupt 0: No effect 1: Tmr1Match2 in
[1]	MTm1Match2	R/W	IntrState will be masked.
			Mask Tm1Match1 interrupt 0: No effect 1: Tmr1Match1 in
[0]	MTm1Match1	R/W	IntrState will be masked.

 TmRevision
 offset:0x3C
 default:0x000

 [31:0]
 TmRevision
 R
 The revision number of ATFTMR010

[m1Prescaler		offset:0x	40 default:0x000
[31:8]	reserved		
[7:0]	Tm1Prescaler	R/W	intialized number of the down counter Tm1counter_pre

Tm2Prescaler			offset:0x	44 default:0x000
	[31:8]	reserved		
	[7:0]	Tm2Prescaler	R/W	intialized number of the down counter Tm2counter_pre

Tm3Prescaler

offset:0x48 default:0x000

[31:8]	reserved		
[7:0]	Tm3Prescaler	R/W	intialized number of the down counter Tm3counter_pre

4.15 Watchdog

Watchdog module is an APB bus device. It is used to prevent the system from the infinite loop if the software gets trapped in the deadlock. In the normal operation, the user restarts the WDT at the regular intervals before the counter counts down to 0. If the counter does reach 0, the WDT generates one or a combination of the signals, system reset, system interrupt, or external interrupt to reset the system, interrupt the system, or interrupt an external device correspondingly.

Table 13 Watchdog module register list (BaseAddr = $0x4001_{4800}$)

Offset	Туре	Width	Name	Description	Reset Value
0x00	R	32	WdControl	The WatchDog timer counter	0x3EF1480
				register	
0x04	R/W	16	WdLosd	The WatchDog timer auto	0x3EF1480
				reload register	
				The auto_reload register is set	
				to 0x3EF1480	
				as the default.	
0x08	W	16	WdRestart	The WatchDog timer counter	0x0000
				register	
				If writing oX5AB9 to this	
				register,the The WatchDog	
				timer will automatically reload	
				the Wdload to Wdcounter and	
				restart the counting.	
0x0c	R/W	5	WdCR	The WatchDog timer counter	0x0
				register	
0x10	R	1	WdStatus	The WatchDog timer status	0x0
				register	
6				This bit is set when the counter	
				reaches 0.	
				0:Does not reach 0.	
0x14	W	1	WdClear	The WatchDog timer is cleraed	0x0
				Writing 1 or 0 to this register	
				will clear the WdStatus.	
0x18	R/W	8	WdIntrlen	The WatchDog timer interrupt	0xEF
				length	
				This register controls the length	
				of wd_st,	
				wd_intr,and wd_ext.the default	
				value is 0XFF	
0x1c	R	32	WdRevision	The revition number of	0x
				ATFWDT010	

[31:0] WdCoun ter R The WdCounter contains the current counter value. When reset, the WdCounter register is set to 0x3EF1480. After the programmer writes 0x5AB9 to the WHD	WdCounter	offset	t:0x00 default:0x3EF1480
[31:0] ter R The WdCounter contains the current counter value. When reset, the WdCounter register is set to 0x3EF1480. After the programmer writes 0x5AB9 to the		WdCoun	
WdRestart, the value of the WdLoad will be loaded into the WdCounter. The WdCounter starts to decrease once the WdCR[0], the WatchDog timer enable bit, is set. If the WatchDog timer is disabled, the WdCounter will hold the value. If the WdCR [4] is set, th register is driven by an external clock, and the WdCounter will decrease in the EXTCLK frequency. This register is read only.	[31:0]	ter R	 The WdCounter contains the current counter value. When reset, the WdCounter register is set to 0x3EF1480. After the programmer writes 0x5AB9 to the WdRestart, the value of the WdLoad will be loaded into the WdCounter. The WdCounter starts to decrease once the WdCR[0], the WatchDog timer enable bit, is set. If the WatchDog timer is disabled, the WdCounter will hold the value. If the WdCR [4] is set, the register is driven by an external clock, and the WdCounter will decrease in the EXTCLK frequency. This register is read only.

W	dLoad		offset:	0x04 default:0x3EF1480
	[31:0]	WdLoad	R/W	The WdLoad contains the value which will be loaded into the WdCounter.
				When reset or restarted, the value of the WdLoad will be automatically loaded
				into the wdCounter register. The reset value of the WdLoad is 0x3EF1480.

W	dRestart		offset:	0x08 default:0x0000
		WdResta		
	[15:0]	rt	W	The WdRestart is used to avoid the unexpected counting. If the programmer
				writes 0x5AB9 to this register, the WatchDog timer counter will load the
				WdLoad into the WdCounter register and the WatchDog timer counter will
				restart to decrease. After finishing the write cycle, the WdRestart will
				automatically be reset to 0.

WdCR		offset:0x0C default:0x00			
	[4] WdClock R/W Th		R/W	The WatchDog timer clock source bit 0: PCLK 1: EXTCLK	
	[3]	WdExt	R/W	The WatchDog timer external signal enable bit 0: Disable 1: Enable	
	[2]	WdIntr	R/W	The WatchDog timer system interrupt enable bit 0: Disable 1: Enable	
	[1]	WdRst	R/W	The WatchDog timer system reset enable bit 0: Disable 1: Enable	
		WdEnabl			
	[0]	e	R/W	The WatchDog timer enable bit 0: Disable 1: Enable	

W	dStatus		offset:	0x10 default:0x0		
		WdStatu				
	[0]	s	R	The WdStatus register records if the WatchDog timer reaches 0 or not. It is read		
				only.		
	offset:0x14 default:0x00					

WdClear

N	dClear				
	[0]	WdClear	W	When writing 1 to this register, the WdStatus will be cleared.	

WdIntrlen offset:		offset:	0x18 default:0xFF	
		WdIntrle		
	[7:0]	n	R/W	The WdIntrlen register decides the duration of the assertion of wd_rst, wd_intr,
				and wd_ext signals. The default value is 0xFF, which means that the default
				assertion duration of wd_rst, wd_intr, and wd_ext is 256 clock cycles.

W	dRevision		offset:	0x1C default:0x0000_0000	
		WdRevis			
	[31:0]	ion	R	The revision number of ATFWDT010	

4.16 SPI

CJC6833A integrates 1 SPI interfaces. SPI is a kind of synchronous serial port interface that allows the host processor to serve as a master or a slave. It can connect to various devices by using serial protocol. It supports several kind of synchronous serial port such as the Synchronous Serial Port (SSP) from Texas Instruments, the Serial Peripheral Interface (SPI) from Motorola, MICROWIRE from National Semiconductor, I2S from Philips, AC-link from Intel, and SPDIF. And the serial data formats may range from 4 bits to 32 bits in length.

SPI module interface inlcude AHB bus interface, SPI external interface, TX/RX FIFO signal and interrupt signal.

Table 14 SPI module register list (BaseAddr = 0x1000_0000)

Offset	Туре	Width	Name	Description	Reset
+0x00	R/W	32	Apb setting	Apb setting register	0x0002_0004
			register	Y	
+0x04	W	32	Pio register	Pio register	0x0000_0004
+0x04	R	32	Pio register	Pio register	0x0000_0004
+0x08	R/W	32	Control	Control register	0x0000_0000
			register		
+0x0c	R/W	32	Spi status	Spi status register	0x0000_0000
			register		
+0x10	R/W	32	Interupt ctrl	Interupt ctrl register	0x0000_0000
			register		
+0x14	R/W	32	Interupt	Interupt status register	0x0000_0000
			status		
			register		
+0x18	R/W	32	Transmit	Transmit ctrl register	0x0000_0000
			ctrl register		
+0x1c	R/W	32	transmit	transmit data register	x0000_0000
			data		
			register		
+0x20	R/W	32	Ahb setting	Ahb setting register	0x0002_0001

			register		
+0x38	R/W	32	Fifo	Fifo information register	0x0000_0101
			information		
			register		

Apb setting register

offset:0x00 default:0x0002_0004

[31:27]	reserved		
[26]	master	R/W	0:spi master 1:spi slave
[25:24]	spi_mode	R/W	cpol/cpha: 0/0, 0/1, 1/0, 1/1
[23:20]	reserved		
[19:16]	cs_period	R/W	Time between each transmitting(cs high), for spi master
			mode
[15:8]	clk_baud2	R/W	clk divide vector 2
			clk divide vector 1, Fsclk=
[7:0]	clk_baud1	R/W	Fhclk/(2*(clk_baud2*clk_baud1 + clk_baud1))

Pi	o register		offset:0x0	4 default:0x0000_0004
	[31:4]	reserved		
	[3]	spi_pio_enable	W	1: cs_o/slk_o/mdata_o driven by following bits enable
	[2]	spi_pio_cs_o	W	cs_o is driven by this bit when spi_pio_enable is high
	[1]	spi_pio_sclk_o	W	sclk_o is driven by this bit when spi_pio_enable is high
	[0]	spi_pio_mdata_o	W	mdata_o is driven by this bit when spi_pio_enable is high
Pi	o register		offset:0x0	4 default:0x0000_0004
Г				

[31:5]	reserved		
[4]	spi_pio_enable	R	1: cs_o/slk_o/mdata_o driven by following bits enable 0:
			disabled
[3]	spi_pio_cs_i	R	spi_cs_i monitor
[2]	spi_pio_sclk_in	R	spi_sclk_in monitor
[1]	spi_pio_sdata_i	R	spi_sdata_i monitor
[0]	spi_pio_mdata_i	R	spi_mdata_i monitor

Control register

offset:0x08 default:0x0000_0000

[31:23]	reserved		
[22:18]	txf_threshold	R/W	spi tx fifo int trigering threshold
[17:15]	reserved		
[14:10]	rxf_threshold	R/W	spi rx fifo int trigering threshold
[9:3]	reserved		
[2]	txf_clear	W	spi tx fifo pointer clear
[1]	rxf_clear	W	spi rx fifo pointer clear
[0]	spi_reset	W	spi software reset

Spi status register

offset:0x0C default:0x0000_0000

[31:23]	reserved		
[22:18]	txf_ventrs	R	valid number of words to be transmited in tx fifo
[17]	txf_full	R	tx fifo full
[16]	txf_empty	R	tx fifo empty
[15]	reserved		
[14:10]	rxf_ventrs	R	valid number of words have been recived in rx fifo
[9]	rxf_full	R	rx fifo full
[8]	rxf_empty	R	rx fifo empty
[7:1]	reserved		
[0]	spi_busy	R	spi busy flag

Interupt ctrl register

offset:0x10 default:0x0000 0000

nterupt ctrl register			offset:0x1	0 default:0x0000_0000
	[31:6]	reserved		
	[5]	spi_conf_int_en	R/W	1:spi conflict interupt enable
	[4]	spi_trans_end_int_en	R/W	1:spi transmitting end interupt enable
				1:spi tx fifo threshold interupt enable , $txf_ventrs \leq =$
	[3]	spi_txf_thres_int_en	R/W	txf_threshold
				1:spi rx fifo threshold interupt enable , $rxf_ventrs >=$
	[2]	spi_rxf_thres_int_en	R/W	rxf_threshold
		spi_txf_under_run_int		
	[1]	_en	R/W	1:spi tx fifo under run interupt enable
	[0]	spi_rxf_over_run_int_	R/W	1:spi rx fifo over run interupt enable
		en		

Interupt status register

offset:0x14 default:0x0000_0000

[31:6]	reserved		
[5]	spi_conf_int_r	R/W	Read: spi conflict interupt status, Write 1 to clear this bit
			Read: spi transmitting end interupt status, Write 1 to clear
[4]	spi_trans_end_int_r	R/W	this bit
			Read: spi tx fifo threshold interupt status, Write 1 to clear
[3]	txf_thres_int_r	R/W	this bit
	N.		Read: spi rx fifo threshold interupt status, Write 1 to
[2]	rxf_thres_int_r	R/W	clear this bit
			Read: spi tx fifo under run interupt status, Write 1 to clear
[1]	txf_under_run_int_r	R/W	this bit
			Read: spi rx fifo over run interupt status, Write 1 to clear
[0]	rxf_over_run_int_r	R/W	this bit

Transmit ctrl register

offset:0x18 default:0x0000_0000

[31]	spi_enable	R/W	1: spi enable
			000: SPI_APB_IDEL; 001: SPI_APB_W_ONLY; 010:
[30:28]	trans_mode	R/W	SPI_APB_R_ONLY; 011: SPI_APB_R_A_W
			100: SPI_APB_DUMMY; 101: SPI_APB_END1; 110:

			SPI_APB_END2 ;111: SPI_APB_END3
[27:26]	reserved		
[25:16]	txf_data_byt_num	R/W	trans length of one transmitting
[15]	reserved		
[14:12]	dummy_data_byt_num	R/W	dummy trans length of one transmitting
[11:10]	reserved		
[9:0]	rxf_data_byt_num		recive length of one transmitting

transmit data register			offset:0x1	C default:0x0000_0000
	[31:0]	txf_data	W	tx fifo data writing window

transmit data register			offset:0x1C default:0x0000_0000			
	[31:0]	rxf_data_out	R	rx fifo data reading window	7	

Ahb setting register offset:0x20 default:0x0002 0001

[31:26]	reserved		
[25:24]	spi_mode	R/W	cpol/cpha: 0/0, 0/1, 1/0, 1/1
[23:20]	reserved		
			Time between each transmitting(cs high), for spi master
[19:16]	cs_period	R/W	mode
[15:8]	clk_baud2	R/W	clk divide vector 2
			clk divide vector 1, Fsclk=
[7:0]	clk_baud1	R/W	Fhclk/(2*(clk_baud2*clk_baud1 + clk_baud1))
Fifo information	ifo information register		38 default:0x0000 0101

Fifo information register

[31:10]	reserved		
[9:8]	txf_depth_info	R	tx fifo depth
[7:2]	reserved		
[1:0]	rxf_depth_info	R	rx fifo depth

4.17 USB controller

USB controller is an AHB device, the main function is to implement the data transfer between CJC6833A system and external USB master device or USB slave device.

USB controller module support USB OTG, it can work as a host to access the external USB device, it also can work as USB device being accessed by external USB master such as PC.

USB controller is compliant with USB specification revision 2.0, it is Compliant with On-The-Go supplement to USB 2.0 specification revision 1.0, it Supports UTMI+ level 2 compliant transceiver and compliant with EHCI(Enhanced Host Controller Interface Specification for USB) 1.0, it support OTG SRP(OTG Session Request Protocol) and HNP(OTG Host Negotiation Protocol) .it Supports point-to-point communications with one HS/FS/LS device, endpoint in this module is can be hardware configured as HS/FS device. Both host and device support isochronous, interrupt, control, bulk transfers. it support DMA access to internal FIFO, and support suspend mode, remote wake-up and resume.

USB controller is mainly composed of a UTM synchronization, packet encode/decode, RAM controller endpoint control and CPU interface, as shown in Figure 24.

Figure 24. USB controller module block diagram

The MUSBHDRC register map is split into the following sections:

Common USB registers (00h-0Fh) - These registers provide control and status for the complete core.

Endpoint Control/Status registers (10h–1Fh, indexed) – These registers provide control and status for the endpoints. The registers mapped into this section depend on whether the core is in Peripheral mode (DevCtl.D2=0) or in Host mode

(DevCtl.D2=1) and on the value of the Index register.

FIFOs (20h–5Fh) – This address range provides access to the endpoint FIFOs.

Additional Control and Configuration registers (60h–7Fh) – These registers provide additional device status and control.

Non-Indexed Endpoint Control/Status registers (100h and above) - The registers available at 10h-1Fh, accessible

independently of the setting of the Index register. 100h–10Fh EP0 registers; 110h–11Fh EP1 registers; 120h–12Fh EP2; et seq.

DMA Control Registers (200h and above) – These registers only appear if the design is synthesized to include optional DMA controller.

 $RqPktCount\ Registers\ (302h-31Eh)-These\ registers\ are\ used\ in\ Host\ mode\ in\ conjunction\ with\ AutoReq.$

The resulting Memory Map is illustrated in the diagram on the following page.

Figure 25. USB memory map

Table 15	USB	register	list(BaseAd	ldr=0x4000	2000)
14010 10	000	register	IID ((Daber Ia	ar on looo_	_2000)

USB driver controller REGISTER MAP: Common USB registers						
ADDR	NAME	TYPE	DESCRIPTION DE			
00	FAddr		Function address register	8'h00		
01	Power		Power management register	8'h20		
02,03	IntrTx		Interrupt register for endpoint 0 plus Tx Endpoints 1 to	16'h0000		
			15			

04,05	IntrRx		Interrupt register for Rx Endpoints 1 to 15	
06,07	IntrTxE		Interrupt enable register for IntrTx	16'hFFFF
08,09	IntrRxE		Interrupt enable register for IntrRx	16'hFFFE
0A	IntrUSB		Interrupt register for common USB interrupts	8'h00
0B	IntrUSBE		Interrupt enable register for IntrUSB	8'h06
0C,0D	Frame		Frame number	16'h0000
0E	Index		Index register for selecting the endpoint status and	4'b0000
			control registers	
0F	Testmode		Enables the USB 2.0 test modes	8'h00
		I		
10,11	TxMaxP		Maximum packet size for peripheral Tx endpoint. (Index	16'h0000
-)			register set to select Endpoints $1 - 15$ only)	
12.13	CSR0		Control Status register for Endpoint 0. (Index register set	8'h00
, -			to select Endpoint 0)	
	Tx CSR		Control Status register for peripheral Tx endpoint. (Index	
			register set to select Endpoints $1 - 15$	Ť
14.15	RxMaxP		Maximum packet size for peripheral Rx endpoint (Index	16'h0000
1,10			register set to select Endpoints $1 - 15$ only)	10 110000
16.17	RxCSR		Control Status register for perinheral Rx endpoint (Index	16'h0000
10,17	Integra		register set to select Endpoints $1 - 15$)	10 110000
18 19	Count()		Control Status register for Endpoint 0 (Index register set	7'b0000000
10,19			to select Endpoint 0)	,
	RxCount		Control Status register for peripheral Tx endpoint. (Index	
	10100000		register set to select Endpoints $1 - 15$	
1A.1B	-		Reserved. Value returned affected by use in Host mode	
1C.1E	-		Unused, always return 0	
1F	ConfigData		Returns details of core configuration. (Index register set	
	Composition (to select Endpoint 0.)	
	FIFOSize		Returns the configured size of the selected Rx FIFO and	
			Tx FIFOs (Endpoints $1 - 15$ only).	
		L		
10.11	TxMaxP		Maximum packet size for host Tx endpoint. (Index	16'h0000
			register set to select Endpoints 1 – 15 only)	
12.13	CSR0		Control Status register for Endpoint 0. (Index register set	16'h0000
,10			to select Endpoint 0)	
	Tx CSR		Control Status register for host Tx endpoint (Index	16'h0000
			register set to select Endpoints $1 - 15$)	10 10000
14.15	RxMaxP		Maximum packet size for host Rx endpoint. (Index	16'h0000
,			register set to select Endpoints $1 - 15$ only)	
16.17	RxCSR		Control Status register for host Rx endpoint. (Index	16'h0000
			register set to select Endpoints $1 - 15$)	
18,19	Count0		Number of received bytes in Endpoint 0 FIFO (Index	13'b000000
			register set to select Endpoint 0)	0000000
í -	1	1		

	RxCount	Number of bytes in host Rx endpoint FIFO. (Index	
		register set to select Endpoints $1 - 15$)	
1A	ТхТуре	Sets the transaction protocol and peripheral endpoint	8'h00
		number for the host Tx endpoint. (Index register set to	
		select Endpoints 1 – 15 only)	
1B	NAKLimit0	Sets the NAK response timeout on endpoint 0. (Index	8'b0000000
		register set to select Endpoint 0)	0
	TxInterval	Sets the polling interval for Interrupt/ISOC transactions	
		or the NAK response timeout on Bulk transactions for	
		host Tx endpoint. (Index register set to select Endpoints	
		1 – 15 only)	
1C	RxType	Sets the transaction protocol and peripheral endpoint	8'h00
		number for the host Rx endpoint. (Index register set to	
		select Endpoints 1 – 15 only)	
1D	RxInterval	Sets the polling interval for Interrupt/ISOC transactions	8'Ь0000000
		or the NAK response timeout on Bulk transactions for	0
		host Rx endpoint. (Index register set to select Endpoints	
		1 – 15 only)	
1E	-	Unused, always return 0	
1F	ConfigData	Returns details of core configuration. (Index register set	
		to select Endpoint 0).	
	FIFOSize	Returns the configured size of the selected Rx FIFO and	
		Tx FIFOs (Endpoints 1 – 15 only).	
	USI	B driver controller REGISTER MAP: FIFOs	
20-5F	FIFOx	FIFOs for endpoints 0-15	
60	DevCtl	OTG device control register	8'h80
61	- '	Unused	
62	TxFIFOsz	Tx Endpoint FIFO size Only used if Dynamic FIFO	
63	RxFIFOsz	Rx Endpoint FIFO size sizing option is selected	
64,65	TxFIFOadd	Tx Endpoint FIFO otherwise return 0.	
		address	
66,67	RxFIFOadd	Rx Endpoint FIFO	
		address	
68-6B	VControl/VStatus	UTMI+PHY Vendor registers(unused)	
6C,6D	HWVers	Hardware Version number register	
6E,6F	1 · · · ·		
70-77	-	Unused	
/0-//	-	Unused ULPI Registers, only implemented where ULPI Link	
/0-//	-	Unused ULPI Registers, only implemented where ULPI Link Wrapper is used.	
78	- - EPInfo	Unused ULPI Registers, only implemented where ULPI Link Wrapper is used. Information about numbers of Tx and Rx endpoints.	
78 79	- - EPInfo RAMInfo	Unused ULPI Registers, only implemented where ULPI Link Wrapper is used. Information about numbers of Tx and Rx endpoints. Information about the width of the RAM and the number	
78	EPInfo RAMInfo	Unused ULPI Registers, only implemented where ULPI Link Wrapper is used. Information about numbers of Tx and Rx endpoints. Information about the width of the RAM and the number of DMA channels.	
78 79 7A	EPInfo RAMInfo LinkInfo	Unused ULPI Registers, only implemented where ULPI Link Wrapper is used. Information about numbers of Tx and Rx endpoints. Information about the width of the RAM and the number of DMA channels. Information about delays to be applied	8'h5C

7C	HS_EOF1		Time buffer available on High-Speed transactions	8'h80	
7D	FS_EOF1		Time buffer available on Full-Speed transactions		
7E	LS_EOF1		Time buffer available on Low-Speed transactions	8'h72	
7F	-		Unused		
	USB driver controller REGISTER MAP: RqPktCount Registers (302h – 31Eh)				
300+2*n	RqPktCount		Number of requested packets for receive endpoint n	16'h0000	
			(endpoints 1-15 only)		

FADDR

Bit	Name	from CPU	from USB	Function
[7]	-	r	-	Unused, always returns 0.
[6:0]	Func Addr	rw	r	The function address.
POWFR				

POWER				
Bit	Name	From CPU	From USB	Function
[7]	ISO Update	rw	r	When set by the CPU, the MUSBHDRC will wait
				for an SOF token from the time TxPktRdy is set
				before sending the packet. If an IN token is received
				before an SOF token, then a zero length data packet
				will be sent.
[6]	Soft Conn	rw	r	If Soft Connect/Disconnect feature is enabled, then
				the USB D+/D- lines are enabled when this bit is set
				by the CPU and tri-stated when this bit is cleared by
				the CPU.
[5]	HS Enab	rw	r	When set by the CPU, the MUSBHDRC will
				negotiate for High-speed mode when the device is
				reset by the hub. If not set, the device will only
				operate in Full-speed mode.
[4]	HS Mode	r	rw	When set, this read-only bit indicates High-speed
		, i		mode successfully negotiated during USB reset.
				In Peripheral Mode, becomes valid when USB reset
				completes (as indicated by USB reset interrupt).
				In Host Mode, becomes valid when Reset bit is
				cleared. Remains valid for the duration of the
				session.
[3]	Reset	r	rw	This bit is set when Reset signaling is present on the
				bus.
[2]	Resume	rw	r	Set by the CPU to generate Resume signaling when
				the function is in Suspend mode. The CPU should
				clear this bit after 10 ms (a maximum of 15 ms) to
				end Resume signaling. In Host mode, this bit is also
				automatically set when Resume signaling from the
				target is detected while the MUSBHDRC is
				suspended.

[1]	Suspend Mode	r	rw	In Host mode, this bit is set by the CPU to enter
				Suspend mode. In Peripheral mode, this bit is set on
				entry
				into Suspend mode. It is cleared when the CPU
				reads the interrupt register, or sets the Resume bit
				above.
[0]	Enable	rw	r	Set by the CPU to enable the SUSPENDM signal.
	SuspendM			

INTRTX

Bit	Name	From CPU	From USB	Function			
[15]	EP15 Tx	r	set	Tx Endpoint 15 interrupt.			
[14]	EP14 Tx	r	set	Tx Endpoint 14 interrupt.			
[13]	EP13 Tx	r	set	Tx Endpoint 13 interrupt.			
[12]	EP12 Tx	r	set	Tx Endpoint 12 interrupt.			
[11]	EP11 Tx	r	set	Tx Endpoint 11 interrupt.			
[10]	EP10 Tx	r	set	Tx Endpoint 10 interrupt.			
[9]	EP9 Tx	r	set	Tx Endpoint 9 interrupt			
[8]	EP8 Tx	r	set	Tx Endpoint 8 interrupt			
[7]	EP7 Tx	r	set	Tx Endpoint 7 interrupt			
[6]	EP6 Tx	r	set	Tx Endpoint 6 interrupt			
[5]	EP5 Tx	r	set	Tx Endpoint 5 interrupt			
[4]	EP4 Tx	r	set	Tx Endpoint 4 interrupt			
[3]	EP3 Tx	r	set	Tx Endpoint 3 interrupt			
[2]	EP2 Tx	r	set	Tx Endpoint 2 interrupt			
[1]	EP1 Tx	r	set	Tx Endpoint 1 interrupt			
[0]	EP0 Tx	r	set	Tx Endpoint 0 interrupt			

INTRRX

Bit	Name	From CPU	From USB	Function
[15]	EP15 Rx	r	set	Rx Endpoint 15 interrupt.
[14]	EP14 Rx	r	set	Rx Endpoint 14 interrupt.
[13]	EP13 Rx	r	set	Rx Endpoint 13 interrupt.
[12]	EP12 Rx	r	set	Rx Endpoint 12 interrupt.
[11]	EP11 Rx	r	set	Rx Endpoint 11 interrupt.
[10]	EP10 Rx	r	set	Rx Endpoint 10 interrupt.
[9]	EP9 Rx	r	set	Rx Endpoint 9 interrupt
[8]	EP8 Rx	r	set	Rx Endpoint 8 interrupt
[7]	EP7 Rx	r	set	Rx Endpoint 7 interrupt
[6]	EP6 Rx	r	set	Rx Endpoint 6 interrupt
[5]	EP5 Rx	r	set	Rx Endpoint 5 interrupt
[4]	EP4 Rx	r	set	Rx Endpoint 4 interrupt
[3]	EP3 Rx	r	set	Rx Endpoint 3 interrupt

[2]	EP2 Rx	r	set	Rx Endpoint 2 interrupt
[1]	EP1 Rx	r	set	Rx Endpoint 1 interrupt
[0]	-			Unused, always returns 0

INTRTXE

Bit	Name	From CPU	From USB	Function
[15]	EP15 Tx en	rw	r	Tx Endpoint 15 interrupt enable bits.
[14]	EP14 Tx en	rw	r	Tx Endpoint 14 interrupt enable bits .
[13]	EP13 Tx en	rw	r	Tx Endpoint 13 interrupt enable bits.
[12]	EP12 Tx en	rw	r	Tx Endpoint 12 interrupt enable bits.
[11]	EP11 Tx en	rw	r	Tx Endpoint 11 interrupt enable bits.
[10]	EP10 Tx en	rw	r	Tx Endpoint 10 interrupt enable bits.
[9]	EP9 Tx en	rw	r	Tx Endpoint 9 interrupt enable bits
[8]	EP8 Tx en	rw	r	Tx Endpoint 8 interrupt enable bits
[7]	EP7 Tx en	rw	r	Tx Endpoint 7 interrupt enable bits
[6]	EP6 Tx en	rw	r	Tx Endpoint 6 interrupt enable bits
[5]	EP5 Tx en	rw	r	Tx Endpoint 5 interrupt enable bits
[4]	EP4 Tx en	rw	r	Tx Endpoint 4 interrupt enable bits
[3]	EP3 Tx en	rw	r	Tx Endpoint 3 interrupt enable bits
[2]	EP2 Tx en	rw	r	Tx Endpoint 2 interrupt enable bits
[1]	EP1 Tx en	rw	r	Tx Endpoint 1 interrupt enable bits
[0]	EP0 Tx en	rw	r	Tx Endpoint 0 interrupt enable bits

INTRRXE

Bit	Name	From CPU	From USB	Function
[15]	EP15 Rx en	rw	r	Rx Endpoint 15 interrupt enable bits.
[14]	EP14 Rx en	rw	r	Rx Endpoint 14 interrupt enable bits .
[13]	EP13 Rx en	rw	r	Rx Endpoint 13 interrupt enable bits.
[12]	EP12 Rx en	rw	r	Rx Endpoint 12 interrupt enable bits.
[11]	EP11 Rx en	rw	r	Rx Endpoint 11 interrupt enable bits.
[10]	EP10 Rx en	rw	r	Rx Endpoint 10 interrupt enable bits.
[9]	EP9 Rx en	rw	r	Rx Endpoint 9 interrupt enable bits
[8]	EP8 Rx en	rw	r	Rx Endpoint 8 interrupt enable bits
[7]	EP7 Rx en	rw	r	Rx Endpoint 7 interrupt enable bits
[6]	EP6 Rx en	rw	r	Rx Endpoint 6 interrupt enable bits
[5]	EP5 Rx en	rw	r	Rx Endpoint 5 interrupt enable bits
[4]	EP4 Rx en	rw	r	Rx Endpoint 4 interrupt enable bits
[3]	EP3 Rx en	rw	r	Rx Endpoint 3 interrupt enable bits
[2]	EP2 Rx en	rw	r	Rx Endpoint 2 interrupt enable bits
[1]	EP1 Rx en	rw	r	Rx Endpoint 1 interrupt enable bits
[0]	_			Unused, always returns 0

INTRUSB

Bit	Name	From CPU	From USB	Function
[7]	VBus Error	r	set	Set when VBus drops below the VBus Valid
				threshold during a session. Only valid when
				MUSBHDRC is 'A' device.
[6]	Sess Req	r	set	Set when Session Request signaling has been
				detected. Only valid when MUSBHDRC is 'A'
				device.
[5]	Discon	r	set	Set in Host mode when a device disconnect is
				detected. Set in Peripheral mode when a session
				ends. Valid at all transaction speeds.
[4]	Conn	r	set	Set when a device connection is detected. Only
				valid in Host mode. Valid at all transaction speeds.
[3]	SOF	r	set	Set when a new frame starts.
[2]	Reset	r	set	Set in Peripheral mode when Reset signaling is
				detected on the bus.
	Babble	r	set	Set in Host mode when babble is detected. Note:
				Only active after first SOF has been sent.
[1]	Resume	r	set	Set when Resume signaling is detected on the bus
				while the MUSBHDRC is in Suspend mode.
[0]	Suspend	r	set	Set when Suspend signaling is detected on the bus.
				Only valid in Peripheral mode.
INTRUS	BE			

INTRUSBE

Bit	Name	From CPU	From USB	Function
[7]	VBus Error en	r	set	interrupt enable bits for each of the interrupts in
	\sim			IntrUSB.
[6]	Sess Req en	r	set	interrupt enable bits for each of the interrupts in
				IntrUSB.
[5]	Discon en	r	set	interrupt enable bits for each of the interrupts in
				IntrUSB.
[4]	Conn en	r	set	interrupt enable bits for each of the interrupts in
				IntrUSB.
[3]	SOF en	r	set	interrupt enable bits for each of the interrupts in
				IntrUSB.
[2]	Reset en	r	set	interrupt enable bits for each of the interrupts in
				IntrUSB.
	Babble en	r	set	interrupt enable bits for each of the interrupts in
				IntrUSB.
[1]	Resume en	r	set	interrupt enable bits for each of the interrupts in
				IntrUSB.
[0]	Suspend en	r	set	interrupt enable bits for each of the interrupts in
				IntrUSB.

FRAME

Bit	Name	From CPU	From USB	Function
[15:11]		r	w	[15:11]='b00000
[10:0]		r	W	holds the last received frame number

INDEX

Bit	Name	From CPU	From USB	Function
[3:0]		rw	r	4-bit register that determines which endpoint
				control/status registers are accessed at addresses 10h
				to 19h.
TESTMC	DDE			

TESTMODE

TESTMC	DDE			
Bit	Name	From CPU	From USB	Function
[7]	Force_Host	rw	r	The CPU sets this bit to instruct the core to enter
				Host mode when the Session bit is set, regardless of
				whether it is connected to any peripheral. The state
				of the CID input, HostDisconnect and LineState
				signals are ignored. The core will then remain in
				Host mode until the Session bit is cleared, even if a
				device is disconnected, and if the Force_Host bit
				remains set, will re-enter Host mode the next time
				the Session bit is set. While in this mode, the status
				of the HOSTDISCON signal from the PHY may be
				read from bit 7 of the DevCtl register.
				The operating speed is determined from the
				Force_HS and Force_FS bits as follows:
				Force_H S Force_FS Operating Speed
				0 0 Low Speed
				0 1 Full Speed
				1 0 High Speed
				1 1 Undefined
[6]	FIFO_Access	set	r	The CPU sets this bit to transfer the packet in the
				Endpoint 0 Tx FIFO to the Endpoint 0 Rx FIFO. It
				is cleared automatically.
[5]	Force_FS	rw	r	The CPU sets this bit either in conjunction with bit 7
				above or to force the MUSBHDRC into Full speed
				mode when it receives a USB reset.
[4]	Force_HS	rw	r	The CPU sets this bit either in conjunction with bit 7
				above or to force the MUSBHDRC into High speed
				mode when it receives a USB reset.
[3]	Test_Packet	rw	r	(High-speed mode) The CPU sets this bit to enter
				the Test_Packet test mode. In this mode, the
				MUSBHDRC repetitively transmits on the bus a
				53-byte test packet

[2]	Test_K	rw	r	(High-speed mode) The CPU sets this bit to enter
				the Test_K test mode. In this mode, the
				MUSBHDRC transmits a continuous K on the bus.
[1]	Test_J	rw	r	(High-speed mode) The CPU sets this bit to enter
				the Test_J test mode. In this mode, the
				MUSBHDRC transmits a continuous J on the bus.
[0]	Test_SE0_NAK	r	r	(High-speed mode) The CPU sets this bit to enter
				the Test_SE0_NAK test mode. In this mode, the
				MUSBHDRC remains in High-speed mode but
				responds to any valid IN token with a NAK.
	·			
DEVCTL				

DEVCTL

Bit	Name	From CPU	From USB	Function
[7]	B-Device	r	rw	This Read-only bit indicates whether the
				MUSBHDRC is operating as the 'A' device or the
				'B' device. $0 \Rightarrow$ 'A' device; $1 \Rightarrow$ 'B' device. Only
				valid while a session is in progress.
[6]	FSDev	r	rw	This Read-only bit is set when a full-speed or
				high-speed device has been detected being
				connected to the port. (High-speed devices are
				distinguished from full-speed by checking for
				high-speed chirps when the device is reset.) Only
				valid in Host mode.
[5]	LSDev	r	rw	This Read-only bit is set when a low-speed device
				has been detected being connected to the port. Only
				valid in Host mode.
[4:3]	VBus[1:0]	r	rw	These Read-only bits encode the current VBus level
				as follows:
				D4 D3 Meaning
				0 0: Below SessionEnd
				0 1: Above SessionEnd, below AValid
				1 0: Above AValid, below VBusValid
				1 1: Above VBusValid
[2]	Host Mode	r	rw	This Read-only bit is set when the MUSBHDRC is
				acting as a Host.
[1]	Host Req	rw	rw	When set, the MUSBHDRC will initiate the Host
				Negotiation when Suspend mode is entered. It is
				cleared when Host Negotiation is completed.
[0]	Session	r	rw	When operating as an 'A' device, this bit is set or
				cleared by the CPU to start or end a session.
				When operating as a 'B' device, this bit is
				set/cleared by the MUSBHDRC when a session
				starts/ends.
				It is also set by the CPU to initiate the Session

		Request Protocol, or cleared by the CPU when in
		Suspend mode to perform a software disconnect.

CSR0 in Peripheral mode:

Bit	Name	From CPU	From USB	Function
[15:9]	_			Unused. Return 0 when read.
[8]	FlushFIFO	set	r	The CPU writes a 1 to this bit to flush the next
				packet to be transmitted/read from the
				Endpoint 0 FIFO. The FIFO pointer is reset and
				the TxPktRdy/RxPktRdy bit (below) is
				cleared.
[7]	ServicedSetupEnd	set	r	The CPU writes a 1 to this bit to clear the
				SetupEnd bit. It is cleared automatically.
[6]	ServicedRxPktRdy	set	r	The CPU writes a 1 to this bit to clear the
				RxPktRdy bit. It is cleared automatically.
[5]	SendStall	set	r	The CPU writes a 1 to this bit to terminate the
				current transaction. The STALL handshake
				will be transmitted and then this bit will be cleared
				automatically.
[4]	SetupEnd	r	set	This bit will be set when a control transaction ends
				before the DataEnd bit has been set.
				An interrupt will be generated and the FIFO
				flushed at this time. The bit is cleared by
				the CPU writing a 1 to the ServicedSetupEnd bit.
[3]	DataEnd	set	r	The CPU sets this bit:
				1. When setting TxPktRdy for the last data packet.
				2. When clearing RxPktRdy after unloading the
				last data packet.
				3. When setting TxPktRdy for a zero length data
				packet.
				It is cleared automatically.
[2]	SentStall	r/clear	set	This bit is set when a STALL handshake is
				transmitted. The CPU should clear this bit.
[1]	TxPktRdy	r/set	r	The CPU sets this bit after loading a data packet
				into the FIFO. It is cleared automatically when the
				data packet has been transmitted. An interrupt is
				generated (if enabled) when the bit is cleared.
[0]	RxPktRdy	r	set	This bit is set when a data packet has been
				received. An interrupt is generated when this bit is
				set. The CPU clears this bit by setting the
				ServicedRxPktRdy bit.

CSR0 in Host mode:

Bit	Name	From CPU	From USB	Function
[15:12]	_			Unused. Return 0 when read.
[11]	Dis Ping	rw	r	The CPU writes a 1 to this bit to instruct the core
				not to issue PING tokens in data and status
				phases of a high-speed Control transfer (for use with
				devices that do not respond to PING).
[10:9]	_			Unused. Return 0 when read.
[8]	FlushFIFO	set	r	The CPU writes a 1 to this bit to flush the next
				packet to be transmitted/read from the Endpoint 0
				FIFO. The FIFO pointer is reset and the
				TxPktRdy/RxPktRdy bit (below) is cleared. Note:
				FlushFIFO should only be used when
				TxPktRdy/RxPktRdy is set. At other times, it may
				cause data to be corrupted.
[7]	NAK Timeout	r/clear	set	This bit will be set when Endpoint 0 is halted
				following the receipt of NAK responses for
				longer than the time set by the NAKLimit0 register.
				The CPU should clear this bit to allow
				the endpoint to continue.
[6]	StatusPkt	rw	r	The CPU sets this bit at the same time as the
				TxPktRdy or ReqPkt bit is set, to perform a status
				stage transaction. Setting this bit ensures that the
				data toggle is set to 1 so that a DATA1 packet is
				used for the Status Stage transaction.
[5]	ReqPkt	rw	rw	The CPU sets this bit to request an IN transaction. It
				is cleared when RxPktRdy is set.
[4]	Error	r/clear	set	This bit will be set when three attempts have been
				made to perform a transaction with no
				response from the peripheral. The CPU should clear
				this bit. An interrupt is generated
				when this bit is set.
[3]	SetupPkt	r/clear	rw	The CPU sets this bit, at the same time as the
				TxPktRdy bit is set, to send a SETUP token
				instead of an OUT token for the transaction.
[2]	RxStall	r/clear	set	This bit is set when a STALL handshake is received.
				The CPU should clear this bit.
[1]	TxPktRdy	r/set	clear	The CPU sets this bit after loading a data packet into
				the FIFO. It is cleared automatically when the data
				packet has been transmitted. An interrupt is
				generated (if enabled) when the bit is cleared.
[0]	RxPktRdy	r/clear	rw	This bit is set when a data packet has been received.
				An interrupt is generated (if enabled) when this bit
				is set. The CPU should clear this bit when the packet

		has been read from the FIFO.	bit.

COUNT0

Bit	Name	From CPU	From USB	Function
[7:0]		r	W	7-bit read-only register that indicates the number of
				received data bytes in the Endpoint 0 FIFO.

CONFIGDATA

Bit	Name	From CPU	From USB	Function
[7]	MPRxE	r	r	When set to '1', automatic amalgamation of bulk
				packets is selected
[6]	MPTxE	r	r	When set to '1', automatic splitting of bulk packets
				is selected
[5]	BigEndian	r	r	When set to '1' indicates Big Endian ordering is
				selected.
[4]	HBRxE	r	r	When set to '1' indicates High-bandwidth Rx ISO
				Endpoint Support selected.
[3]	HBTxE	r	r	When set to '1' indicates High-bandwidth Tx ISO
				Endpoint Support selected.
[2]	DynFIFO	r	r	When set to '1' indicates Dynamic FIFO Sizing
	Sizing			option selected.
[1]	SoftConE	r	rw	When set to '1' indicates Soft Connect/Disconnect
				option selected.
[0]	UTMI	r	r	Indicates selected UTMI+ data width. $0 \Rightarrow 8$ bits; 1
	DataWidth			\Rightarrow 16 bits. starts/ends. It is also set by the CPU to
				initiate the Session Request Protocol, or cleared by
				the CPU when in Suspend mode to perform a
				software disconnect.

NAKLIMIT0 (Host Mode only)

Bit	Name	From CPU	From USB	Function
[4:0]		rw	r	5-bit register that sets the number of
				frames/microframes (High-Speed transfers) after
				which Endpoint 0 should timeout on receiving a
				stream of NAK responses.

TXMAXP

Bit	Name	From CPU	From USB	Function
[15:11]	multiplier	rw	r	Where the option of High-bandwidth
Or				Isochronous/Interrupt endpoints or of packet
[12:11]				splitting on Bulk endpoints has been taken when
				the core is configured, the register includes either
				2 or 5 further bits that define a multiplier m which

				is equal to one more than the value recorded.
[10:0]	Maximum	rw	r	Bits 10:0 define (in bytes) the maximum payload
	Payload/transaction			transmitted in a single transaction. The value set
				can be up to 1024 bytes but is subject to the
				constraints placed by the USB Specification on
				packet sizes for Bulk, Interrupt and Isochronous
				transfers in Full speed and High-speed operations.

TXCSR In Peripheral mode

Bit	Name	From CPU	From USB	Function
[15]	AutoSet	rw	r	If the CPU sets this bit, TxPktRdy will be
				automatically set when data of the maximum packet
				size (value in TxMaxP) is loaded into the Tx FIFO.
				If a packet of less than the maximum packet size is
				loaded, then TxPktRdy will have to be set manually.
[14]	ISO	rw	r	The CPU sets this bit to enable the Tx endpoint for
				Isochronous transfers, and clears it to enable the Tx
				endpoint for Bulk or Interrupt transfers
[13]	Mode	rw	r	The CPU sets this bit to enable the endpoint
				direction as Tx, and clears it to enable the endpoint
				direction as Rx.
[12]	DMAReqEnab	rw	r	The CPU sets this bit to enable the DMA request for
				the Tx endpoint.
[11]	FrcDataTog	rw	r	The CPU sets this bit to force the endpoint data
				toggle to switch and the data packet to be cleared
				from the FIFO, regardless of whether an ACK was
				received. This can be used by Interrupt Tx
			~	endpoints that are used to communicate rate
				feedback for Isochronous endpoints.
[10]	DMAReqMode	rw	r	The CPU sets this bit to select DMA Mode 1 and
				clears this bit to select DMA Mode 0.
[9:8]	-	r	r	Unused, always return 0.
[7]	IncompTx	r/clear	set	When the endpoint is being used for high-bandwidth
				Isochronous/Interrupt transfers, this bit is set to
				indicate where a large packet has been split into 2 or
				3 packets for transmission but insufficient IN tokens
				have been received to send all the parts.
[6]	ClrDataTog	set	r/clear	The CPU writes a 1 to this bit to reset the endpoint
				data toggle to 0.
[5]	SentStall	r/clear	set	This bit is set when a STALL handshake is
				transmitted. The FIFO is flushed and the TxPktRdy
				bit is cleared (see below). The CPU should clear this
				bit.
[4]	SendStall	rw	r	The CPU writes a 1 to this bit to issue a STALL

[3] FlushFIFO set r The CPU writes a 1 to this bit to flush the latest packet from the endpoint Tx FIFO. The FIFO pointer is reset, the TxPktRdy bit (below) is cleared and an interrupt is generated. May be set simultaneously with TxPktRdy to abort the packet that is currently being loaded into the FIFO. [2] UnderRun r/clear set The USB sets this bit if an IN token is received when the TxPktRdy bit not set. The CPU should clear this bit. [1] FIFONotEmpty r/clear set The USB sets this bit when there is at least 1 packet in the Tx FIFO. [0] TxPktRdy r/set clear The CPU sets this bit after loading a data packet into the FIFO. [0] TxPktRdy r/set clear The CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					handshake to an IN token. The CPU clears this bit to
[3]FlushFIFOsetrThe CPU writes a 1 to this bit to flush the latest packet from the endpoint Tx FIFO. The FIFO pointer is reset, the TxPktRdy bit (below) is cleared and an interrupt is generated. May be set simultaneously with TxPktRdy to abort the packet that is currently being loaded into the FIFO.[2]UnderRunr/clearsetThe USB sets this bit if an IN token is received when the TxPktRdy bit not set. The CPU should clear this bit.[1]FIFONotEmptyr/clearsetThe USB sets this bit when there is at least 1 packet in the Tx FIFO.[0]TxPktRdyr/setclearThe CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					terminate the stall condition.
and an interrupt is generated. May be set simultaneously with TxPktRdy bit (below) is cleared and an interrupt is generated. May be set simultaneously with TxPktRdy to abort the packet that is currently being loaded into the FIFO.[2]UnderRunr/clearsetThe USB sets this bit if an IN token is received when the TxPktRdy bit not set. The CPU should clear this bit.[1]FIFONotEmptyr/clearsetThe USB sets this bit when there is at least 1 packet in the Tx FIFO.[0]TxPktRdyr/setclearThe CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second	[3]	FlushFIFO	set	r	The CPU writes a 1 to this bit to flush the latest
[2]UnderRunr/clearset[2]UnderRunr/clearset[1]FIFONotEmptyr/clearset[0]TxPktRdyr/setclear[0]TxPktRdyr/setclear[0]TxPktRdyr/setclear[1]FIFONotEmptyr/setclear[1]FIFONotEmptyr/setclear[1]FIFONotEmptyr/setclear[2]TxPktRdyr/setclear[3]TxPktRdyr/setset[4]The USB sets this bit when there is at least 1 packet in the Tx FIFO.[6]TxPktRdyr/setclear[6]TxPktRdyr/setclear[7]TxPktRdyr/setclear[8]The CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					packet from the endpoint Tx FIFO. The FIFO
and an interrupt is generated. May be set simultaneously with TxPktRdy to abort the packet that is currently being loaded into the FIFO.[2]UnderRunr/clearsetThe USB sets this bit if an IN token is received when the TxPktRdy bit not set. The CPU should clear this bit.[1]FIFONotEmptyr/clearsetThe USB sets this bit when there is at least 1 packet in the Tx FIFO.[0]TxPktRdyr/setclearThe CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					pointer is reset, the TxPktRdy bit (below) is cleared
Image: simultaneously with TxPktRdy to abort the packet that is currently being loaded into the FIFO.[2]UnderRunr/clearsetThe USB sets this bit if an IN token is received when the TxPktRdy bit not set. The CPU should clear this bit.[1]FIFONotEmptyr/clearsetThe USB sets this bit when there is at least 1 packet in the Tx FIFO.[0]TxPktRdyr/setclearThe CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					and an interrupt is generated. May be set
[2]UnderRunr/clearsetThe USB sets this bit if an IN token is received when the TxPktRdy bit not set. The CPU should clear this bit.[1]FIFONotEmptyr/clearsetThe USB sets this bit when there is at least 1 packet in the Tx FIFO.[0]TxPktRdyr/setclearThe CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					simultaneously with TxPktRdy to abort the packet
[2]UnderRunr/clearsetThe USB sets this bit if an IN token is received when the TxPktRdy bit not set. The CPU should clear this bit.[1]FIFONotEmptyr/clearsetThe USB sets this bit when there is at least 1 packet in the Tx FIFO.[0]TxPktRdyr/setclearThe CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					that is currently being loaded into the FIFO.
Image: set	[2]	UnderRun	r/clear	set	The USB sets this bit if an IN token is received
[1] FIFONotEmpty r/clear set The USB sets this bit when there is at least 1 packet in the Tx FIFO. [0] TxPktRdy r/set clear The CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					when the TxPktRdy bit not set. The CPU should
[1] FIFONotEmpty r/clear set The USB sets this bit when there is at least 1 packet in the Tx FIFO. [0] TxPktRdy r/set clear The CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					clear this bit.
[0] TxPktRdy r/set clear The CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second	[1]	FIFONotEmpty	r/clear	set	The USB sets this bit when there is at least 1 packet
[0]TxPktRdyr/setclearThe CPU sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					in the Tx FIFO.
the FIFO. It is cleared automatically when a data packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second	[0]	TxPktRdy	r/set	clear	The CPU sets this bit after loading a data packet into
packet has been transmitted. An interrupt is also generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					the FIFO. It is cleared automatically when a data
generated at this point (if enabled). TxPktRdy is also automatically cleared prior to loading a second					packet has been transmitted. An interrupt is also
automatically cleared prior to loading a second					generated at this point (if enabled). TxPktRdy is also
					automatically cleared prior to loading a second
packet into a double-buffered FIFO.					packet into a double-buffered FIFO.
TXCSR In Host mode	TXCSR I	n Host mode			

TXCSR In Host mode

Bit	Name	From CPU	From USB	Function
[15]	AutoSet	rw	r	If the CPU sets this bit, TxPktRdy will be
				automatically set when data of the maximum
				packet size (value in TxMaxP) is loaded into the
				Tx FIFO. If a packet of less than the maximum
				packet size is loaded, then TxPktRdy will have to
				be set manually.
[14]	-	rw	r	Unused, always returns zero.
[13]	Mode	rw	r	The CPU sets this bit to enable the endpoint
				direction as Tx, and clears it to enable the endpoint
				direction as Rx.
[12]	DMAReqEnab	rw	r	The CPU sets this bit to enable the DMA request
				for the Tx endpoint.
[11]	FrcDataTog	rw	r	The CPU sets this bit to force the endpoint data
				toggle to switch and the data packet to be cleared
				from the FIFO, regardless of whether an ACK was
				received. This can be used by Interrupt Tx
				endpoints that are used to communicate rate
				feedback for Isochronous endpoints.
[10]	DMAReqMode	rw	r	The CPU sets this bit to select DMA Mode 1 and
				clears this bit to select DMA Mode 0.
[9:8]	_	r	r	Unused, always return 0.
[7]	NAK Timeout	r/clear	set	Bulk endpoints only: This bit will be set when the

				Tx endpoint is halted following the receipt of
				NAK responses for longer than the time set as the
				NAK Limit by the TxInterval register. The CPU
				should clear this bit to allow the endpoint to
				continue.
	IncompTx	r/clear	set	High-bandwidth Interrupt endpoints only: This bit
				will be set if no response is received from the
				device to
				which the packet is being sent.
[6]	ClrDataTog	set	r/clear	The CPU writes a 1 to this bit to reset the endpoint
				data toggle to 0.
[5]	RxStall	r/clear	set	This bit is set when a STALL handshake is
				received. When this bit is set, any DMA request
				that is in progress is stopped, the FIFO is
				completely flushed and the TxPktRdy bit is cleared
				(see below). The CPU should clear this bit.
[4]	_	r	r	Unused. Returns zero when read.
[3]	FlushFIFO	set	r	The CPU writes a 1 to this bit to flush the latest
				packet from the endpoint Tx FIFO. The FIFO
				pointer is reset, the TxPktRdy bit (below) is
				cleared and an interrupt is generated. May be set
				simultaneously with TxPktRdy to abort the packet
				that is currently being loaded into the FIFO.
[2]	Error	r/clear	rw	The USB sets this bit when 3 attempts have been
				made to send a packet and no handshake packet
				has been received. When the bit is set, an interrupt
				is generated, TxPktRdy is cleared and the FIFO
				completely flushed. The CPU should clear this bit.
				Valid only when the endpoint is operating in Bulk
				or Interrupt mode.
[1]	FIFONotEmpty	r/clear	set	The USB sets this bit when there is at least 1
		~		packet in the Tx FIFO.
[0]	TxPktRdy	r/set	clear	The CPU sets this bit after loading a data packet
				into the FIFO. It is cleared automatically when a
				data packet has been transmitted. An interrupt is
				also generated at this point (if enabled). TxPktRdy
				is also automatically cleared prior to loading a
				second packet into a double-buffered FIFO.

RXMAXP

Bit	Name	From CPU	From USB	Function
[15:11]	multiplier	rw	r	Where the option of High-bandwidth
Or				Isochronous/Interrupt endpoints or of combining
[12:11]				Bulk packets has been taken when the core is

				configured, the register includes either 2 or 5
				further bits that define a multiplier m which is
				equal to one more than the value recorded.
[10:0]	Maximum	rw	r	Bits 10:0 define (in bytes) the maximum payload
	Payload/transaction			transmitted in a single transaction. The value set
				can be up to 1024 bytes but is subject to the
				constraints placed by the USB Specification on
				packet sizes for Bulk, Interrupt and Isochronous
				transfers in Full speed and High-speed operations.

RXCSR In Peripheral mode

RXCSR	In Peripheral mode			
Bit	Name	From CPU	From USB	Function
[15]	AutoClear	rw	r	If the CPU sets this bit then the RxPktRdy bit will
				be automatically cleared when a packet of
				RxMaxP bytes has been unloaded from the Rx
				FIFO. When packets of less than the maximum
				packet size are unloaded, RxPktRdy will have to
				be cleared manually.
[14]	ISO	rw	r	The CPU sets this bit to enable the Rx endpoint for
				Isochronous transfers, and clears it to enable
				the Rx endpoint for Bulk/Interrupt transfers.
[13]	DMAReqEnab	rw	r	The CPU sets this bit to enable the DMA request
				for the Rx endpoint.
[12]	DisNyet	Rw/r	r/rw	Bulk/Interrupt Transactions: The CPU sets this bit
				to disable the sending of NYET handshakes. When
				set, all successfully received Rx packets are ACK'd
				including at the point at which the FIFO becomes
			~	full.
[12]	PID Error	Rw/r	r/rw	ISO Transactions: The core sets this bit to indicate
				a PID error in the received packet.
[11]	DMAReqMode	rw	r	The CPU sets this bit to select DMA Mode 1 and
				clears this bit to select DMA Mode 0.
[10:9]		r	r	Unused, always return 0.
[8]	IncompRx	r/clear	set	This bit is set in a high-bandwidth
				Isochronous/Interrupt transfer if the packet in the
				Rx FIFO is incomplete because parts of the data
				were not received. It is cleared when RxPktRdy is
				cleared.
[7]	ClrDataTog	set	r/clear	The CPU writes a 1 to this bit to reset the endpoint
				data toggle to 0.
[6]	SentStall	r/clear	set	This bit is set when a STALL handshake is
				transmitted. The CPU should clear this bit.
[5]	SendStall	rw	r	The CPU writes a 1 to this bit to issue a STALL
				handshake. The CPU clears this bit to terminate

				the stall condition.		
[4]	FlushFIFO	set	r	The CPU writes a 1 to this bit to flush the next		
				packet to be read from the endpoint Rx FIFO.		
				The FIFO pointer is reset and the RxPktRdy bit		
				(below) is cleared.		
[3]	DataError	r	set	This bit is set when RxPktRdy is set if the data		
				packet has a CRC or bit-stuff error. It is cleared		
				when RxPktRdy is cleared.		
[2]	OverRun	r/clear	set	This bit is set if an OUT packet cannot be loaded		
				into the Rx FIFO. The CPU should clear this bit.		
[1]	FIFOFull	r	set	This bit is set when no more packets can be loaded		
				into the Rx FIFO.		
[0]	RxPktRdy	r/clear	set	This bit is set when a data packet has been		
				received. The CPU should clear this bit when the		
				packet has been unloaded from the Rx FIFO. An		
				interrupt is generated when the bit is set.		
RXCSR I	n host mode					

RXCSR In host mode

Bit	Name	From CPU	From USB	Function
[15]	AutoClear	rw	r	If the CPU sets this bit then the RxPktRdy bit will
				be automatically cleared when a packet of
				RxMaxP bytes has been unloaded from the Rx
				FIFO. When packets of less than the maximum
				packet size are unloaded, RxPktRdy will have to
				be cleared manually.
[14]	AutoReq	rw	r	If the CPU sets this bit, the ReqPkt bit will be
				automatically set when the RxPktRdy bit is
			·	cleared.
[13]	DMAReqEnab	rw	r	The CPU sets this bit to enable the DMA request
				for the Rx endpoint.
[12]	PID Error	r	rw	ISO Transactions Only: The core sets this bit to
				indicate a PID error in the received packet.
				Bulk/Interrupt Transactions: The setting of this bit
				is ignored.
[11]	DMAReqMode	rw	r	The CPU sets this bit to select DMA Mode 1 and
				clears this bit to select DMA Mode 0.
[10:9]	_	r	r	Unused, always return 0.
[8]	IncompRx	r/clear	set	This bit will be set in a high-bandwidth
				Isochronous/Interrupt transfer if the packet
				received is incomplete. It will be cleared when
				RxPktRdy is cleared.
[7]	ClrDataTog	set	r/clear	The CPU writes a 1 to this bit to reset the endpoint
				data toggle to 0.
[6]	RxStall	r/clear	set	When a STALL handshake is received, this bit is

				set and an interrupt is generated. The CPU should
				clear this bit.
[5]	ReqPkt	rw	rw	The CPU writes a 1 to this bit to request an IN
				transaction. It is cleared when RxPktRdy is set.
[4]	FlushFIFO	set	r	The CPU writes a 1 to this bit to flush the next
				packet to be read from the endpoint Rx FIFO.
				The FIFO pointer is reset and the RxPktRdy bit
				(below) is cleared.
[3]	DataError/ NAK	r (/clear)	set	When operating in ISO mode, this bit is set when
	Timeout			RxPktRdy is set if the data packet has a CRC or
				bit-stuff error and cleared when RxPktRdy is
				cleared. In Bulk mode, this bit will be set when the
				Rx endpoint is halted following the receipt of
				NAK responses for longer than the time set as the
				NAK Limit by the RxInterval register. The CPU
				should clear this bit to allow the endpoint to
				continue.
[2]	Error	r/clear	set	The USB sets this bit when 3 attempts have been
				made to receive a packet and no data packet has
				been received. The CPU should clear this bit. An
				interrupt is generated when the bit is set.
[1]	FIFOFull	r	set	This bit is set when no more packets can be loaded
				into the Rx FIFO.
[0]	RxPktRdy	r/clear	set	This bit is set when a data packet has been
				received. The CPU should clear this bit when the
				packet has been unloaded from the Rx FIFO. An
				interrupt is generated when the bit is set.

RXCOUNT

D!4	Nama	E CDU	E-main LICD	E
ы	Iname	From CPU	From USB	Function
[12:0]	Endpoint Rx Count	r	w	13-bit read-only register that holds the number of
				received data bytes in the packet currently in line
				to be read from the Rx FIFO. If the packet was
				transmitted as multiple bulk packets, the number
				given will be for the combined packet.

TXTYPE (Host mode only)

Bit	Name	From CPU	From USB	Function
[5:4]	Protocol	rw	r	The CPU should set this to select the required
				protocol for the Tx endpoint:
				00: Illegal
				01: Isochronous
				10: Bulk

				11: Interrupt
[3:0]	Target Endpoint	rw	r	The CPU should set this value to the endpoint
	number			number contained in the Tx endpoint descriptor
				returned to the MUSBHDRC during device
				enumeration.

TXINTERVAL (Host mode only)

Bit	Name	From CPU	From USB	Function
[7:0]	Tx Polling	rw	r	TxInterval is an 8-bit register that, for Interrupt
	Interval/NAK			and Isochronous transfers, defines the polling
	Limit (m)			interval for the currently-selected Tx endpoint.
				For Bulk endpoints, this register sets the number
				of frames/microframes after which the endpoint
				should timeout on receiving a stream of NAK
				responses. There is a TxInterval register for each
				configured Tx endpoint (except Endpoint 0).
RXTYPE	(Host mode only)			

RXTYPE (Host mode only)

Bit	Name	From CPU	From USB	Function
[5:4]	Protocol	rw	r	The CPU should set this to select the required
				protocol for the Rx endpoint:
				00: Illegal
				01: Isochronous
				10: Bulk
				11: Interrupt
[3:0]	Target Endpoint	rw	r	The CPU should set this value to the endpoint
	number			number contained in the Rx endpoint descriptor
			Ť	returned to the MUSBHDRC during device
				enumeration.

RXINTERVAL (Host mode only)

Bit	Name	From CPU	From USB	Function
[7:0]	Rx Polling	rw	r	RxInterval is an 8-bit register that, for Interrupt
	Interval/NAK			and Isochronous transfers, defines the polling
	Limit (m)			interval for the currently-selected
				Rx endpoint. For Bulk endpoints, this register sets
				the number of frames/microframes after which the
				endpoint should timeout
				on receiving a stream of NAK responses. There is
				a RxInterval register for each configured Rx
				endpoint (except Endpoint 0).

FIFOSIZE

Bit	Name	From CPU	From USB	Function
[7:4]	Rx FIFO Size	r	r	the sizes of the FIFOs associated with the selected
				additional Rx endpoints.
[3:0]	Tx FIFO Size	r	r	the sizes of the FIFOs associated with the selected
				additional Tx endpoints.

HWVERS

Bit	Name	From CPU	From USB	Function
[15]	RC	r	r Set to '1' if RTL used from a Release Candida	
				rather than from a full release of the core.
[14:10]	XX	r	r Major Version Number (Range 0 – 31).	
[9:0]	ууу	r	r	Minor Version Number (Range 0 – 999).

EPINFO

Bit	Name	From CPU	From USB	Function
[7:4]	RxEndPoints	r	r	The number of Rx endpoints implemented in the
				design.
[3:0]	TxEndPoints	r	r	The number of Tx endpoints implemented in the
				design.

RAMINFO

Bit	Name	From CPU	From USB	Function		
[7:4]	DMAChans	r	r	The number of DMA channels implemented in the		
				design.		
[3:0]	RamBits	r	r	The width of the RAM address bus – 1.		

LINKINFO

Bit	Name	From CPU	From USB	Function
[7:4]	[7:4] WTCON rw		r	Sets the wait to be applied to allow for the user's
			connect/disconnect filter in units of 533.3ns. (The	
				default setting corresponds to 2.667µs.)
[3:0]	:0] WTID rw		r	Sets the delay to be applied from IDPULLUP
				being asserted to IDDIG being considered valid
			in units of 4.369ms. (The default setting	
				corresponds to 52.43ms.)

VPLEN

Bit	Name	From CPU	From USB	Function
[7:0]	VPLEN	rw	r	Sets the duration of the VBus pulsing charge in
			units of 546.1 µs. (The default setting correspon	
				to 32.77ms.)

HS_EOF1

Bit	Name	From CPU	From USB	Function
[7:0]	HS_EOF1	rw	r	Sets for High-speed transactions the time before
			EOF to stop beginning new transactions, in units	
			of 133.3ns. (The default setting corresponds to	
				17.07µs.)

FS_EOF1

Bit	Name	From CPU	From USB	Function	
[7:0]	FS_EOF1	rw	r Sets for Full-speed transactions the time before		
				EOF to stop beginning new transactions, in units	
				of 533.3ns. (The default setting corresponds to	
				63.46µs.)	

LS EOF1

Bit	Name	From CPU	From USB	Function		
[7:0]	LS_EOF1	rw	r	Sets for Low-speed transactions the time before		
				EOF to stop beginning new transactions, in units		
				of 1.067µs. (The default setting corresponds to		
				121.6µs.)		

RqPktCount (Host Mode Only)

Bit	Name	From CPU	From USB	Function
[15:0]	RqPktCount	rw	rw	Sets the number of packets of size MaxP that are
				to be transferred in a block transfer. Only used in
				Host mode when AutoReq is set. Has no effect in
				Peripheral mode or when AutoReq is not set.

TxFIFOsz/ RxFIFOsz

Bit	Name	From CPU	From USB	Fun	ction	
4	DPB	rw	r	Defines whether double-packe	t buffering supported. When	
				'1', double-packet buffering is	supported. When '0', only	
				single-packet buffering is supported.		
[3:0]	SZ[3:0]	rw	r	Maximum packet size to be all	owed for (before any splitting	
				or after any combination withi	n the FIFO	
				of Bulk/High-Bandwidth packets prior to or following		
				transmission.		
				SZ[3:0]	Packet Size(Byte)	
				0000	8	
				0001 16		
				0010 32		
				0011	64	
				0100	128	

	0101	256
	0110	512
	0111	1024
	1000	2048
	1001	4096
	If $DPB = 0$, the FIFO will also	be this size; if $DPB = 1$, the
	FIFO will be twice this size.	

TxFIFOadd/ RxFIFOadd

Bit	Name	From CPU	From USB	Function		
[12:0]	AD	rw	r	Start address of the endpoin	t FIFO in units of 8 bytes as	
				follows:		
				AD[12:0]	Start Address	
				0000	0000	
				0001	0008	
				0002	0010	
				1FFF	FFF8	

4.18 POR

Power on reset module is a system asynchronous reset signal generation module, it detect the power status and generate the reset signal when power is supply. Figure 25 is CJC6833A power on reset circuit block diagram and figure 26 is the POR signal timing sequence.

 $\boldsymbol{\Sigma}$

4.19 Power control unit

4.19.1 Power supply

Figure 27 is the CJC6833A chip power pad and power supply diagram. The power supply include three parts: 3.3V supply for CJC6833A analog circuit, 3.3V power supply for I/O and 1.8V power pad from internal LDO. 3.3V power supply for analog circuit have 3 pairs power/ground pin, one pair is for USB PHY, another is for PLL which need stable and "clear" power supply to improve jitter and accurate performance, the other is for other analog module in CJC6833A chip such as LDO, APU, SARADC, LVR controller analog circuit. 3.3V power supply for I/O includes 1 pairs. CJC6833A has a internal LDO, which transfer 3.3V power to 1.8V power, LDO output power supply for CJC6833A digital logic and USB PHY digital logic also, a 1.8V pin is output to connect capacitor for decoupling.

Figure 27. CJC6833A power supply diagram

4.19.2 LVR

CJC6833A has a low voltage reset generation circuit (LVR). The main circuit of LVR is comparator, it comparator the supply voltage with the configured threshold. If the supply is lower than the threshold, reset will be generated and send to all others module, then CJC6833A will enter into reset state.

4.19.3 Register control

Table 16 Power	unit register	list (Bas	eAddr =	0x4001	0000)

			0		_ /
0x08	R2	R/W	0x0	[2:1]	lvr_in :
					config the threshold voltage for low voltage reset
					b00 : 2.0V
					b01 : 2.4V
					b10 : 2.V
					b11:3V
				[0]	lvr_en : enable low voltage reset

4.19.4 Power Saving Mode

CJC6833A has the low power management mode that can help reducing power consumption when the device does not require intensive CPU resources and speed. There are one low power modes available: SLEEP mode, as showed in Figure 28.

Figure 28. CJC6833A power saving mode diagram

i) Entry into SLEEP mode: When operating as a peripheral, the USB controller monitors the activity on the USB and when no activity has occurred for 3 ms, it goes into SLEEP mode. If the Suspend interrupt has been enabled, an interrupt will be generated at this time. The SUSPENDM output will also go low (If the Enable SuspendM bit is set). Users need to do the following thing: Write "1" to sys_pll_pdn and audio_pll_pdn registers to power down the system PLL and audio PLL;Set the codec power management register to power down the codec circuit; Change the system clock to internal low-power 10KHz oscillator.

(ii) When Resume signaling occurs on the bus, first the clock to the USB controller must be restarted if necessary. Then the USB controller will automatically exit SLEEP mode. If the Resume interrupt is enabled, an interrupt will be generated. Then users can reconfigure the registers to power on the system PLL, audio PLL, codec circuit and change the system clock to 48MHz.

(iii) Initiating a Remote Wakeup. If the SARADC receive a signal from the button of earphone, CJC6833A should write to the Power register to set the Resume bit to '1'. The software should leave this bit set for approximately 10 ms before resetting it to 0. By this time the hub should have taken over driving Resume signaling on the USB. Then the USB controller will exit SLEEP mode . Users can reconfigure the registers to power on the system PLL, audio PLL, codec circuit and change the system clock to 48MHz.

4.20 MTP_controller

MTP_controller base address: $0x1020_0000$ ($0x0020_0000$)

MTP controller config reg				Offset: 0x00
Bit	Default	Туре	Name	Description
31:17	0	RW	pre_rd_cfg	Pre_read start when ahb_read missing counter reach
				(pre_rd_cfg+1)
16	0	RW	pre_rd_en	MTP pre_read enable:
				1: enable
				0: disable
15	0	RW	ecc_en	ECC enbale
				When asserted high, enable ECC generation during
				Program; enable ECC correction during Read.
14:12	0	RW	tcerh_cfg	chip erase Tcerh hold time:
				000: 50ms
				001: 80ms
				010: 100ms
				011: 150ms
				100: 200ms
				101: 300ms
				110: 350ms
				111: 400ms
11				reserved
10: 8	0	RW	terh_cfg	sector erase terh hold time:
		K ,		000: 50ms
				001: 80ms
				010: 100ms
				011: 150ms
				100: 200ms
				101: 300ms
				110: 350ms
				111: 400ms
7				reserved
6:4	0	RW	tpgh_cfg	program tpgh hold time:
				000: 7.5us
				001: 15us
				010: 20us
				011: 30us
				100: 40us
				101: 50us
				110: 60us
				111: 80us
3:2				reserved

92 / 96

1	1	RW	pdvhn	MTP high voltage PDVHn:		
				When asserted '0' disables all memory operations.		
0	1	RW	pdn	MTP PDn:		
				When asserted '0' disables all memory operations.		

MTP_controller interrupt enable reg				offset:0x04		
Bit	Default	Туре	Name	Description		
31: 3				reserved		
2	0	RW	cer_done_inten	chip erase done interrupt enable:		
				1: enable		
				0: disable		
1	0	RW	ser_done_inten	sector erase done interrupt enable:		
				1: enable		
				0: disable		
0	0	RW	prog_done_inten	program done interrupt enable:		
				1: enable		
				0: disable		

MTP controller interrupt status reg				offset: 0x08	
Bit	Default	Туре	Name	Description	
31: 3				reserved	
2	0	RW	cer_done_int	chip erase done interrupt status:	
				1: interrupt generated	
				write 1 to clear this bit.	
1	0	RW	ser_done_int	sector erase done interrupt status:	
				1: interrupt generated	
				write 1 to clear this bit.	
0	0	RW	prog_done_int	program done interrupt status:	
				1: interrupt generated	
				write 1 to clear this bit.	
			·		

MTP addres	s reg			offset: 0x0c		
Bit Default Type Name			Name	Description		
31: 12				reserved		
11: 0	0	RW	MTP_addr	MTP memory unit address:		
				12' h000~12' hfff		

MTP data0	reg			offset: 0x10
Bit	Default	Туре	Name	Description
31: 0	0	RW	MTP_data0	write data to MTP memory section 0, section 0 can be
				read if haddr $[2] = 0$.
				note:section 0 and 1 must be written at same time

MTP data1 r	reg			offset: 0x14		
Bit	Default	Туре	Name	Description		
31: 0	0	RW	MTP_data1	write data to MTP memory section 1, section 1 can be		
				read if haddr $[2] = 1$.		
				note:section 0 and 1 must be written at same time		

МТР

MTP program	m reg			offset: 0x18	
Bit	Default	Туре	Name	Description	
31: 16	0	RW	pwd	keyword:16' ha47d must be written here to enable	
				MTP_prog signal.Can not read.	
15: 1	0			reserved	
0	0	RW	MTP_prog	write 1 to program MTP memory.	
				return 0 when read.	

MTP sector erase reg

MTP sector	erase reg		offset: 0x1c		
Bit	Default	Туре	Name	Description	
31: 16	0	RW	pwd	keyword:16' ha47d must be written here to enable	
				MTP_ser signal.Can not read.	
15: 1	0			reserved	
0	0	RW	MTP_ser	write 1 to erase MTP memory sector.	
				return 0 when read.	
				sertor address: MTP_addr[13:6].	

MTP chip erase reg offset: 0x20							
Bit	Default	Туре	Name	Description			
31: 16	0	RW	pwd	keyword:16' ha47d must be written here to enable			
				MTP_cer signal.Can not read.			
15: 1	0			reserved			
0	0	RW	MTP_cer	write 1 to erase MTP memory chip.			
				return 0 when read.			

www.eshine-ic.com

5.PACKAGE DIMENSIONS

SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
А	0.70	0.75	0.80	
	0.80	0.85	0.90	
A1	0.00	0.02	0.05	
b	0.20	0.25	0.30	
b1	0.16REF			
с	0.18	0.20	0.25	
D	4.90	5.00	5.10	
D2	3.70	3.80	3.90	
e	0.50BSC			
Ne	3.50BSC			
Nd	3.50BSC			
Е	4.90	5.00	5.10	
E2	3.70	3.80	3.90	
L	0.25	0.30	0.35	
h	0.30	0.35	0.40	
L/F	4.10X4.10			

48 PIN COL QFN PLASTIC PACKAGE 6×6 mm BODY

SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
А	0.75	0.85	1.00	
A1	0.00	0.02	0.05	
A3	0.20REF			
b	0.15	0.20	0.25	
D/E	6.00BSC			
D2/E2	4.15	4.40	4.65	
е	0.40BSC			
L	0.30	0.40	0.50	